
Muse
Identity
Manager
Install

May 2, 2023

Document Version 1.16

Muse Identity Manager
2.3.0.3

Notice

No part of this publication may be
reproduced stored in a retrieval
system, or transmitted, in any form
or by any means, without the prior
written permission of MuseGlobal
Inc.

Disclaimer

MUSEGLOBAL, INC. MAKES NO REPRESENTATIONS OR

WARRANTIES WITH RESPECT TO THE CONTENTS HEREOF

AND SPECIFICALLY DISCLAIMS ANY IMPLIED

WARRANTIES OR MERCHANTABILITY OR FITNESS FOR

ANY PARTICULAR PURPOSE.

Trademarks

MUSE IS A REGISTERED TRADEMARK OF MUSEGLOBAL,

INC. OTHER PRODUCT NAMES AND SERVICE NAMES ARE

THE TRADEMARKS OR REGISTERED TRADEMARKS OF

THEIR RESPECTIVE OWNERS AND ARE USED FOR IDEN

TIFICATION ONLY.

museknowledge.com

260 Madison Avenue, 8th Floor
New York, NY 10016, U.S.A.
+1 (646) 740-4968 SUPPORT@MUSEKNOWLEDGE.COM

Table of Contents

1.0 Overview 5

2.0 Installation 7

2.1 Hardware Requirements 7

2.2 Software Requirements 7

2.3 Installation Steps 11

2.3.1 DBMS Settings 12

2.3.2 Apache Tomcat Installation 13

2.3.3 Muse IDM Installation 13

3.0 Advanced Configurations 19

3.1 Changing Default Ports for Apache Tomcat 19

3.2 Configuring SMTP 20

3.3 Configuring DBMS 21

3.4 Configuring Email Templates 21

3.5 Configuring reCAPTCHA 22

3.6 Configuring Themes 23

3.7 Configuring Tasks 25

4.0 Muse IDM as SAML 2.0 Identity Provider 29

4.1 SAML Attribute Filter 30

4.2 SAML Attribute Mapping 32

4.3 Muse Proxy configured as Service Provider 34

4.4 MuseKnowledge Search application configured as Service Provider 35

4.5 Rocket.Chat configured as Service Provider 36

5.0 Muse IDM as OAuth2 Authorization Server 39

6.0 Muse IDM with HMAC authentication 41

MUSE IDENTITY MANAGER INSTALL 3

7.0 Internationalization support 43

8.0 Theme Support 45

9.0 User Custom Attributes 47

10.0 Limit Login Attempts 51

11.0 Session Management 53

12.0 Payment Feature 55

12.1 Stripe Integration 57

12.2 Paystack Integration 58

12.3 Verifone Integration 61

13.0 User Password History 63

14.0 User Password Expiration 65

15.0 Automatic Registration for Allowed Emails 67

16.0 Registration Advanced Field Validation 69

17.0 Configure Shibboleth IDP with SQL authentication 71

17.1 Install Shibboleth on CentOS 7.6 71

17.1.1 Install latest JDK 8 available 71

17.1.2 Install and configure Tomcat for Shibboleth IDP 72

17.2 Deploy Shibboleth in the Tomcat Servlet Container 74

17.2.1 Configure Shibboleth to use the MySQL Database for authentication 75

17.3 Configure Shibboleth to extract and export the user attributes 76

1.0 application.properties config file 81

2.0 email.properties config file 87

3.0 database.properties config file 89

4.0 users.properties config file 91

5.0 log4j2.xml config file 93

6.0 Known Issues 95

4 © 2006-2023 MUSEGLOBAL INC

1.0
Overview

Muse Identity Manager (Muse IDM) is a web application with processes for identifying, authenticating

and authorizing individuals or groups of people to access configured applications by associating user rights

and restrictions with established identities.

This application offers support for user registration with email validation, with or without administrator

approval, centralized management including users visualization, searching and filtering, bulk updates,

sending email, export/import as/from CSV.

OVERVIEW 5

6 © 2006-2023 MUSEGLOBAL INC

2.0
Installation

The Muse IDM application can be installed on any platform on which a Java Virtual Machine can be

installed.

2.1 Hardware Requirements

The following are the minimum and recommended hardware specifications for running the Muse IDM

application.

Minimum specification:

✃ 120 GB hard disk space;

✃ 4 GB RAM;

✃ Intel Pentium IV equivalent or better processor, multicore (at least 2 cores);

✃ Processor clock speed of 2.4 GHz or better.

Recommended specification:

✃ 240 GB hard disk space;

✃ 8 GB RAM;

✃ Intel Pentium IV equivalent or better processor, multicore (at least 4 cores);

✃ Processor clock speed of 3.0 GHz or better.

2.2 Software Requirements

The following environment software products are necessary to operate the Muse IDM application.

INSTALLATION 7

All the environment software listed below has been tested with the Muse IDM application, and supports

it fully. This does not mean that the Muse IDM application is not fully functional on other environments

not listed here.

1 Operating System

The following operating systems have been tested with the Muse IDM application;

✃ Windows 10;

✃ Linux, various distributions: Ubuntu, CentOS, Debian;

2 Java Virtual Machine Software Development Kit (JDK)

It is recommended the installation of a Java Virtual Machine Software Development Kit (SDK, or

also referred to as JDK) package because they contain tools not available in the Java Runtime

Environment (JRE) package that can be used for monitoring and troubleshooting issues related to

the Java Virtual Machine and the Muse IDM application. For example, the jstat tool available

in a JDK package displays performance statistics for an instrumented HotSpot Java Virtual

Machine (JVM). The Java Virtual Machine Software Development Kit contains the JRE.

The following virtual machines and platform combinations have been tested with the Muse IDM

application:

✃ Intel x64/Linux, JDK8, OpenJDK 8, OpenJDK 11;

✃ Intel x64/Windows, JDK8, AdoptOpenJDK 8, JDK11, AdoptOpenJDK 11;

Note: Java 8 is the minimum and recommended software specification for running the IDM

application.

Note: It is recommended to install the JDK or OpenJDK version that matches the architecture,

e.g. if the architecture is on 64 bit then the 64 bit JDK or OpenJDK must be installed.

a. OpenJDK Installation on Windows Platforms

✃ Download the latest build of the Windows OpenJDK version 8 from:

https://adoptium.net/temurin/releases/?version=8

according to the architecture of the server, e.g. download the 64 bit version if the

server's architecture is on 64 bit.

✃ Install the OpenJDK according to the installation instructions from here:

8 © 2006-2023 MUSEGLOBAL INC

https://adoptium.net/temurin/releases/?version=8

https://adoptium.net/installation/windows/

After the installation is performed, define the environment variable called JAVA_HOME

pointing to the OpenJDK installation. Assuming the destination directory is

C:/OpenJDK1.8 set JAVA_HOME=c:/OpenJDK1.8 .

Also it is recommended to add in the system Path environment variable the OpenJDK

bin folder. For example, if your Java installation folder is C:/OpenJDK1.8 then add

the following string to the Path environment variable: C:/OpenJDK1.8/bin . Note

that the separator between the entries from the Path variable is the semicolon (;) .

Details for how to update the Path variable for some Windows distributions can be

found here:

https://www.java.com/en/download/help/path.xml

b. OpenJDK Installation on Linux Platforms

✃ Download the latest build of the Linux OpenJDK version 8 from:

https://adoptium.net/temurin/releases/?version=8

according to the architecture of the server, e.g. download the 64 bit version if the

server's architecture is on 64 bit.

The OpenJDK setup kit can be of 2 types: a rpm package or a tar.gz archive,

download the one which is appropriate.

✃ Install the OpenJDK according to the installation instructions from here:

https://adoptium.net/installation/linux/

After the installation is performed, define the environment variable called JAVA_HOME

pointing to the JDK installation. Assuming the destination directory is /

usr/java/openjdk run the following command :

export JAVA_HOME=/usr/java/openjdk

Add the line above in the file /etc/profile to make this setting permanent on Linux.

The variable becomes globally available after the next login.

Also it is recommended to add in the system PATH environment variable the JDK bin

folder. Details for how to update the PATH variable for Linux can be found here:

INSTALLATION 9

https://adoptium.net/installation/windows/
https://www.java.com/en/download/help/path.xml
https://adoptium.net/temurin/releases/?version=8
https://adoptopenjdk.net/installation.html?variant=openjdk8&jvmVariant=hotspot#linux-pkg

http://www.java.com/en/download/help/path.xml

3 Database Management System (DBMS)

A DBMS installation is needed by the Muse IDM application, such as MySQL, Microsoft SQL

Server, Oracle, etc.

The MySQL DBMS was tested with the Muse IDM application and it is the one used and refered

in this installation manual.

MySQL Community Edition is a freely downloadable version which is provided under the GPL

License.

Because version 8.0 was tested with the Muse IDM application, all instructions from below and

comments refer only to this version. Other MySQL versions may work as well, but they were not

tested.

a. MySQL server installation on Windows Platforms

✃ Download MySQL Community Server Windows executable package, making sure to

get the version that matches the hardware architecture (32 bit or 64):

https://dev.mysql.com/downloads/mysql/8.0.html#downloads

✃ Install it according to the installation instructions from here:

https://dev.mysql.com/doc/refman/8.0/en/windows-installation.ht

ml

b. MySQL server installation on Linux Platforms

✃ Download MySQL Community Server Linux , making sure to get the version that

matches the hardware architecture (32 bit or 64):

https://dev.mysql.com/downloads/mysql/8.0.html#downloads

✃ Install it according to the installation instructions from here:

https://dev.mysql.com/doc/refman/8.0/en/linux-installation.html

Note: If the installed Linux distribution has a package manager (e.g. Apt on Debian/

Ubuntu, Yum for RedHat) then install MySQL server using the package manager by

following the instructions from the above link.

4 Web server implementing Java Servlet and JavaServer Pages technologies

10 © 2006-2023 MUSEGLOBAL INC

http://www.java.com/en/download/help/path.xml
https://www.gnu.org/licenses/old-licenses/gpl-2.0.html
https://www.gnu.org/licenses/old-licenses/gpl-2.0.html
https://dev.mysql.com/downloads/mysql/8.0.html#downloads
https://dev.mysql.com/doc/refman/8.0/en/windows-installation.html
https://dev.mysql.com/doc/refman/8.0/en/windows-installation.html
https://dev.mysql.com/downloads/mysql/8.0.html#downloads
https://dev.mysql.com/doc/refman/8.0/en/linux-installation.html

The Muse IDM application is a web application which runs inside a servlets container server such

as Apache Tomcat, JBoss, WebLogic, GlassFish.

The Apache Tomcat server is the web server tested with the Muse IDM application and this is

further refered into documentation.

Apache Tomcat is developed in an open and participatory environment and released under the

Apache License version 2 and it is the servlet container that is used in the official Reference Im

plementation for the Java Servlet and JavaServer Pages technologies.

5 phpMyAdmin (optional)

phpMyAdmin is a free software tool written in PHP, intended to handle the administration of

MySQL over the Web. phpMyAdmin is released under GNU General Public License, version 2.

It can be installed for providing an easier user interface oriented management over the MySQL

database.

The installation of phpMyAdmin is not covered here, please refer to the phpMyAdmin website:

https://www.phpmyadmin.net

The phpMyAdmin tool requires a web server (such as Apache, IIS), so this must be installed too,

prior to the installation of phpMyAdmin.

2.3 Installation Steps

The steps for installing the Muse IDM application are:

1 The installation of the software requirements. See the above Software Requirements

chapter regarding the software requirements.

2 The installation of the Muse IDM application. This is covered in the current section.

3 Performing post-install configuration. This is covered in the next sections.

The overall steps for installing the Muse IDM application are the following:

1 Create the necessary database and users in the DBMS. This is described in the "DBMS Settings"

section.

INSTALLATION 11

http://www.apache.org/licenses
https://www.gnu.org/licenses/gpl-2.0.html
https://www.phpmyadmin.net
#SoftwareRequirements

2 Install the Web Server. Apache Tomcat server is the servlets container server tested with the

Muse IDM application, its installation is described in the "Apache Tomcat Installation" section.

3 Install the Muse IDM application. This is descried in the "Muse IDM Installation" section.

2.3.1 DBMS Settings

The Muse IDM application makes use of a DBMS (Database Management System) for storing data.

Because only MySQL DMBS was tested with the Muse IDM application, all instructions from this

paragraph are for MySQL.

Note: The Muse IDM application was also tested with PostgreSQL 11.1 but doesn't work because of a

table named user which is a reserved word based on documentation from here

https://www.postgresql.org/docs/11/sql-keywords-appendix.html

Note: Starting with 2.1.0.8 version, user table was renamed to users, PostgreSQL 13.3 can be used

with Muse IDM. Alo is required to rename oauth2-schema-postgres.sql file to

oauth2-schema.sql.

Create the MySQL database and users for Muse IDM application:

In the mysql command line client, as the database root user execute the following commands:

mysql> CREATE DATABASE IDM CHARACTER SET utf8mb4 COLLATE utf8mb4_bin;

This command will create a new database with the name IDM which will be used by the Muse IDM

application.

The responses to each command should look like:

Query OK, 1 row affected (0.00 sec)

Then create users for accessing the newly created database and specify their priviledges. This is done by

running the following commands:

mysql> CREATE USER 'IDMUser'@'localhost' IDENTIFIED BY 'IDMUserPass';

mysql> GRANT ALL ON IDM.* TO 'IDMUser'@'localhost';

mysql> FLUSH PRIVILEGES;

where replace IDMUserPass with a more secure password.

12 © 2006-2023 MUSEGLOBAL INC

https://www.postgresql.org/docs/11/sql-keywords-appendix.html

The result of running this command is the creation of the user IDMUser with the provided password and

with all priviledges on the IDM database.

2.3.2 Apache Tomcat Installation

Apache Tomcat version 8.5 or higher must be installed for running the Muse IDM application.

Tomcat 8.5 and 9 were also tested and they work fine, other Apache Tomcat versions were not tested,

but they may work as well.

✃ Download the Apache Tomcat version 8.5 archive from:

https://tomcat.apache.org/download-80.cgi

according to the server's platform (e.g. if the server architecture is 64 bit then download the 64 bit

archive)

✃ Extract the Apache Tomcat archive in the desired installation location. Recommended locations:

✃ C: drive on Windows platforms.

✃ /opt/ folder on Linux platforms.

Note: On Linux platforms make sure that the script files (*.sh) from the bin folder from the

Apache Tomcat installation folder are executable.

2.3.3 Muse IDM Installation

The Muse IDM aplication can be installed by 2 methods:

✃ Independently of the Muse Federated Search Platform, as Web Application Archive (.war file).

✃ Part of the Muse Federated Search Platform, into the Embedded Apache Tomcat as external

context.

Note: Before going further with the installation make sure the Hardware and Software requirements are

met and you have a valid License Key File.

Note: On following sections and chapters you will see IDM_HOME very often and represents the location

where Muse IDM application is installed, which can be MUSE_HOME/idm/www if is installed in the

Embedded Apache Tomcat from the Muse Federated Search Platform or

CATALINA_HOME/webapps/idm if is installed as Web Application Archive in

INSTALLATION 13

https://tomcat.apache.org/download-80.cgi

CATALINA_HOME/webapps folder.

Note: Any changes made in the following files:

1 IDM_HOME/WEB-INF/classes/application.properties

2 IDM_HOME/WEB-INF/classes/database.properties

3 IDM_HOME/WEB-INF/classes/email.properties

4 IDM_HOME/WEB-INF/classes/users.properties

5 IDM_HOME/WEB-INF/classes/log4j2.xml

Note: require a server restart. This rule is also applied for all XML files from the

IDM_HOME/WEB-INF/config folder.

2.3.3.1 Installing the Muse IDM application as Web
Application Archive

The Muse IDM application is distributed as a Web Application Archive (.war file) that is deployed

inside a web server implementing the servlets specification.

The steps for installing the Muse IDM application into Apache Tomcat web server using the war archive

are below:

1 Deploy into CATALINA_HOME/webapps the Muse IDM Web Application Archive idm.war

file.

2 If Security Manager is enabled for the Apache Tomcat server then the following entry need to be

added in CATALINA_HOME/conf/catalina.policy at the end of the file:

grant codeBase "file:${catalina.base}/webapps/idm/-" {

permission java.security.AllPermission;

};

3 Stop the Apache Tomcat server:

CATALINA_HOME/bin/shutdown.{bat|sh}

After the shutdown command was issued check the system's processes to make sure the Apache

Tomcat process has really stopped, and only when the process has stopped issue the startup

command.

14 © 2006-2023 MUSEGLOBAL INC

4 Make sure that the following structure of properties files with configurations for the application,

MySQL database, SMTP and users exists properly configured:

✃ Edit the

CATALINA_HOME/webapps/idm/WEB-INF/classes/application.properties file

as described at section "application.properties config file".

✃ Edit the

CATALINA_HOME/webapps/idm/WEB-INF/classes/database.properties file as

described at section "database.properties config file".

✃ Edit the CATALINA_HOME/webapps/idm/WEB-INF/classes/email.properties

file as described at "email.properties config file".

✃ Edit the CATALINA_HOME/webapps/idm/WEB-INF/classes/users.properties

file as described at "users.properties config file".

5 Start the Apache Tomcat server:

CATALINA_HOME/bin/startup.{bat|sh}

Upon startup the Muse IDM application archive is deployed, this should take a couple of seconds.

Verbose information is written in the Apache Tomcat console.

6 To access the Muse IDM application login in a web browser at:

http://Installation_HOSTNAME:PORT/idm

where replace Installation_HOSTNAME with the actual server hostname and PORT with the

actual server port.

As a good practice for stopping the IDM application follow the rules:

✃ Use only the shutdown/startup sequence via Tomcat's scripts, do not terminate the process by kill/

end task actions;

✃ After the shutdown command was issued wait as long as it takes until the Apache Tomcat has

stopped. This may take even a couple of minutes, to verify that it stopped check the system's

processes to make sure the Apache Tomcat is gone.

2.3.3.2 Installing the Muse IDM application into
Muse Embedded Apache Tomcat as external context

INSTALLATION 15

The Muse IDM application is also distributed with the Muse Federated Search Platform, as external

context for the Embedded Apache Tomcat version 8.5.

The steps are:

1 Make sure that the Muse IDM application is installed on machine under MUSE_HOME/idm/www

folder.

2 Stop the Embedded Apache Tomcat server:

CATALINA_HOME/bin/shutdown.{bat|sh}

After the shutdown command was issued check the system's processes to make sure the Apache

Tomcat process has really stopped, and only when the process has stopped issue the startup

command.

3 If Security Manager is enabled for Apache Tomcat, then the following entry must be added in

MUSE_HOME/aas/java.tomcat.policy at the end of file:

grant codeBase "file:${MUSE_HOME}/idm/www/-"{

permission java.security.AllPermission;

};

4 Add following entry in CATALINA_HOME/conf/server.xml configuration file:

<Context path="/idm" docBase="${MUSE_HOME}/idm/www"

crossContext="true" xmlNamespaceAware="false" xmlValidation="false"/>

inside the Host tag.

5 Make sure that the following structure of properties files with configurations for the application,

MySQL database, SMTP and users exists properly configured:

✃ Edit the MUSE_HOME/idm/www/WEB-INF/classes/application.properties file as

described at section "application.properties config file".

✃ Edit the MUSE_HOME/idm/www/WEB-INF/classes/database.properties file as

described at section "database.properties config file".

✃ Edit the MUSE_HOME/idm/www/WEB-INF/classes/email.properties file as

described at section "email.properties config file".

✃ Edit the MUSE_HOME/idm/www/WEB-INF/classes/users.properties file as

described at "users.properties config file".

16 © 2006-2023 MUSEGLOBAL INC

6 Start the Apache Tomcat server:

CATALINA_HOME/bin/startup.{bat|sh}

Upon startup the Muse IDM application is initialized, this should take a couple of seconds.

Verbose information is written in the Embedded Apache Tomcat console.

7 To access the Muse IDM application login in a web browser at:

http://Installation_HOSTNAME:PORT/idm

where replace Installation_HOSTNAME with the actual server hostname and PORT with the

actual server port.

2.3.3.3 License Key File Installation

When logging for the first time into the Muse IDM application with the default administrative account,

as configured in the application.properties file, you will be redirected to a page where to upload

and install the License Key File.

INSTALLATION 17

18 © 2006-2023 MUSEGLOBAL INC

3.0
Advanced Configurations

This section describes advanced configurations that can be done for the Muse IDM application.

3.1 Changing Default Ports for Apache Tomcat

By default the port on which the Apache Tomcat server binds is 8080. To change it to the standard

HTTP port 80 (or another port value) follow the steps:

1 Stop the Apache Tomcat server:

CATALINA_HOME/bin/shutdown.{bat|sh}

2 Edit the file CATALINA_HOME/conf/server.xml file and locate the Connector XML node

having the attribute port="8080". Below is an example:

<Connector port="8080" protocol="HTTP/1.1" connectionTimeout="20000"

redirectPort="8443" />

3 Change the 8080 value to 80, e.g. the entry should look like below:

<Connector port="80" protocol="HTTP/1.1" connectionTimeout="20000"

redirectPort="8443" />

4 Edit the Muse IDM application configuration files to reflect the new port value:

✃ Edit the file IDM_HOME/WEB-INF/classes/application.properties and change

the value of the application.url property to reflect the port changes.

5 Start the Apache Tomcat server:

CATALINA_HOME/bin/startup.{bat|sh}

ADVANCED CONFIGURATIONS 19

3.2 Configuring SMTP

The Muse IDM application has email functionalities, meaning that it sends emails to the registered users.

Sending of emails is done using a SMTP server.

The SMTP configuration for the Muse IDM application is done as following:

1 Stop the Apache Tomcat server:

CATALINA_HOME/bin/shutdown.{bat|sh}

2 Edit the IDM_HOME/WEB-INF/classes/email.properties text file by using the in

structions from the "email.properties config file" section.

Make sure the correct SMTP values are configured in the email.properties file according

with the instructions from the Appendix.

3 If the SMTP server is configured SSL or TLS authentication and if the certificate used by the

server is not signed by a well known authority, then the server's certificate must be added into the

truststore file used by the Muse IDM application, which is the one from JDK -

$JAVA_HOME/jre/lib/security/cacerts.

Below are the steps for doing this:

✃ Obtain the server's certificate and store it into a *.crt or *.cer file. This can be done using

a keystores/certificates manager tool such as CERTivity KeyStores Manager , or it can be

retrieved from the email client, or by using advanced shell commands with the openssl

tool.

✃ Import the certificate into java's trustore using the keytool utility that comes with the JDK

package:

keytool -importcert -file your_certificate_file -keystore

"$JAVA_HOME/jre/lib/security/cacerts" -alias "alias_name"

where replace your_certificate_file with the actual name of the certificate file from

the previous step and as alias_name a proper name for identifying the certificate inside the

truststore (for example it can be the server's hostname).

20 © 2006-2023 MUSEGLOBAL INC

http://www.edulib.com/products/keystores-manager/overview/

Note: The JAVA_HOME variable must be defined and pointing to the current JDK installation.

If not then replace it with the exact path pointing to the JDK installation folder.

Note: When asked for password by the keytool utility use changeit.

4 Start the Apache Tomcat server:

CATALINA_HOME/bin/startup.{bat|sh}

3.3 Configuring DBMS

The Muse IDM application use DBMS to store users and their details.

The database configuration for the Muse IDM application is done as following:

1 Stop the Apache Tomcat server:

CATALINA_HOME/bin/shutdown.{bat|sh}

2 Edit the IDM_HOME/WEB-INF/classes/database.properties text file by using the in

structions from the "database.properties config file" section.

Make sure the correct database values are configured in the database.properties file

according with the instructions from the Appendix.

3 Start the Apache Tomcat server:

CATALINA_HOME/bin/startup.{bat|sh}

3.4 Configuring Email Templates

The Muse IDM application has support to send emails to users and administrators of the system on

different actions such as validation of user email on registration process, to notify administrators about to

expire accounts or to notify users that their accounts was modified by an administrator etc. These

templates are written using FreeMarker Template Engine and are located by default under

ADVANCED CONFIGURATIONS 21

https://freemarker.apache.org/

IDM_HOME/WEB-INF/classes/emailTemplates folder.

Note: There is no need to restart the Apache Tomcat server in order that changes made in an email

template to be reloaded.

The following metavariables are available to be used in the email templates:

1 ${user.fullname} to access user full name.

2 ${user.email} to access user email.

3 ${user.locked?c} to access user locked state which also is a boolean value.

4 ${user.status} to access user status.

5 ${user.enabled?c} to access user enabled state which also is a boolean value.

6 ${user.expiryAt} to access the expiration date of user account in the following format:

YYYY-MM-DD (for example: 2019-01-30).

7 ${user.createdAt} to access the date when user account was created in the following

format: YYYY-MM-DD (for example: 2019-01-30).

Note: Also in emails you can access all configuration properties from all configuration files using variables

as follows: ${applicationConfig['application.name']} where application.name

represent a property from IDM_HOME/WEB-INF/classes/application.properties con

figuration file.

Note: If you want to display a boolean property as string then you need to append ?c at the end of

variable as follows: ${applicationConfig['email.starttls.enable']?c} where

email.starttls.enable is a key from IDM_HOME/WEB-INF/classes/users.properties

file.

Also the selfUrl property is set by default in all email templates and is accessd with ${selfUrl}

variable and represent the value of application.url defined in

IDM_HOME/WEB-INF/classes/application.properties configuration file.

3.5 Configuring reCAPTCHA

reCAPTCHA was introduced to protect the login and registration forms from fraud and abuse.

All configurations related with reCAPTCHA can be found in the WEB-

INF/classes/application.properties configuration file and are represented as follow:

22 © 2006-2023 MUSEGLOBAL INC

#START CAPTCHA CONFIGURATION

The site key used by Google reCAPTCHA v2.

captcha.site.key=

The secret key used by Google reCAPTCHA v2.

captcha.secret.key=

The verification URL where the Google reCAPTCHA v2 whill be server side

validated.

captcha.verification.url =

https://www.google.com/recaptcha/api/siteverify?secret=%s&response=%s&remot

eip=%s

#END CAPTCHA CONFIGURATION

#START CAPTCHA ATTEMPT CONFIGURATION

Default value is false.

captcha.attempt.enabled = true

Default value is 3.

captcha.attempt.maxAttempts = 3

Default value is 8192.

captcha.attempt.cacheMaximumSize = 8192

This value is parsed as java.time.Duration. Default value is 5 minutes.

captcha.attempt.expireAfterWrite = PT5M

This flag enable or disable captcha on login page. Default value is

false.

captcha.login.enabled = false

#END CAPTCHA ATTEMPT CONFIGURATION

The most important reCAPTCHA configurations are:

✃ captcha.site.key - the public key used in interface to generate the token.

✃ captcha.secret.key - the private key used for server side validation of generated token.

✃ captcha.login.enabled - flag configuration which enable or disable the reCAPTCHA on

login page.

The reCAPTCHA keys are configured through the Google Administrator Console and is available here.

3.6 Configuring Themes

The Muse IDM application comes with a set of predefined interface themes to choose from, the

following features are available with regard to themes:

ADVANCED CONFIGURATIONS 23

https://www.google.com/recaptcha/admin

✃ A default theme can be configured, by editing the

IDM_HOME/WEB-INF/classes/application.properties configuration file and setting

the theme's identifier for the theme.defaultThemeName property. The following themes are

available:

Amelia (ID amelia), Brown (ID brown), Dark (ID dark), Dark Blue (ID darkblue), Gray (ID

gray), Purple (ID purple), White (ID white).

✃ The theme can be set/changed by passing the theme identifier as value for the &theme parameter

in the requests.

✃ A Theme menu item is available from which the end-users can change the theme. The Theme

menu can be disabled by setting the menu.themes.enabled property to false in the

IDM_HOME/WEB-INF/classes/application.properties configuration file.

✃ New themes can be developed and added in the list of themes, to add a new theme the next steps

must be followed:

1 Create a new properties file

IDM_HOME/WEB-INF/classes/theme/THEME_ID.properties with following

structure:

#The name of CSS file which will be loaded when THEME_ID theme

will be selected by user.

theme.css = mgb.css

theme.adds.css = mgb_adds.css

where THEME_ID represent the id of theme and also must be unique, the identifier of client

should be used instead.

2 Copy mgb.css and mgb_ads.css files in

IDM_HOME/WEB-INF/static-resources/css/themes folder.

3 You can choose to set this new theme as default by replacing the current value of

theme.defaultThemeName property found in

IDM_HOME/WEB-INF/classes/application.properties file as follow:

#The default theme loaded if none was selected by user.

theme.defaultThemeName=THEME_ID

4 Also you can add this new theme on themes menu by editing

IDM_HOME/WEB-INF/jsp/include/header.jsp file as follow:

24 © 2006-2023 MUSEGLOBAL INC

a. Locate the Themes menu element.

b. Add a new element under ul element as follow:

<a href="<c:url value="?theme=THEME_ID" />">

THEME_NAME

where THEME_ID is the id of defined theme in previous steps and THEME_NAME represent

the name of theme which will be displayed for users in menu.

5 Restart Apache Tomcat server:

CATALINA_HOME/bin/shutdown.{bat|sh}

CATALINA_HOME/bin/startup.{bat|sh}

Note: More details about themes can be found here.

3.7 Configuring Tasks

At this moment there are only two tasks defined in the

IDM_HOME/WEB-INF/config/tasks-context.xml configuration file:

1 Purge unavalidated emails after registration process.

After a user registration request is made, a validation email is sent to the user to validate that the

registered email is indeed his. This email contains a link with a token which expires after 24

hours. The purging task runs at every 10 minutes but this can be changed by specifying another

cron expression for task.purgeUnvalidatedEmails.cron property from

IDM_HOME/WEB-INF/classes/application.properties file.

This task has role to delete all registered users entries who do not validate their emails in 24 hours

in order to maintain a clean database.

Also the duration of a registration token can be changed from user.token.expiry property

from IDM_HOME/WEB-INF/classes/application.properties file.

2 Notify administrators about accounts that are about to expire.

A registered user has associated an expiration date with his account and it represent the last day

ADVANCED CONFIGURATIONS 25

https://docs.spring.io/spring/docs/current/spring-framework-reference/web.html#mvc-themeresolver

when he can authenticate in the application or in all applications associated with the Muse IDM

database.

This task runs every day at 1AM and checks if there are user accounts which are about to expiry

over 5 or 15 days. If such accounts are found then an email will be sent to all users wil Ad

ministrator role to notify about these accounts which are about to expire. Also a link is

provided in the email which takes the administrator to the Muse IDM application on the users

page displaying the accounts that are about to expire.

Also this task can be scheduled to run at a different time by changing the cron expression defined

by task.notifyAdministratorsAboutAccountsToExpire.cron property from

IDM_HOME/WEB-INF/classes/application.properties configuration file.

Default values 5 and 15 days for expiration date can be changed from

IDM_HOME/WEB-INF/classes/application.properties file as in following example:

Need to be configured with values which can be parsed by

java.util.Period.parse(CharSequence text) method as in following doc

umentation

#

https://docs.oracle.com/javase/8/docs/api/java/time/Period.html#parse

-java.lang.CharSequence-

Specify accounts who are about to expire over 10 days.

task.notifyAdministratorsAboutAccountsToExpire.firstNotification =

P10D

Specify accounts who are about to expire over 30 days.

task.notifyAdministratorsAboutAccountsToExpire.lastNotification =

P30D

#If P0D is provided as value for one of previous two configurations

then that property will be skipped.

3 Purge oldest N password history entries for all users

Starting with version 2.1.0.0, a registered user has associated a password history. This history

represents a list of password changes made by the user or by the administrator of the system and

this history of password changes is kept in order to make sure that the user doesn't use the same

old password when he decide to change it.

Also this task can be scheduled to run at a different time by changing the cron expression defined

by task.purgeOldestNPasswordHistoryEntriesForAllUsers.cron property from

IDM_HOME/WEB-INF/classes/application.properties configuration file defined

26 © 2006-2023 MUSEGLOBAL INC

bellow:

#START TASK WHICH PURGE LAST N PASSWORD HISTORY ENTRIES

N is specified by password.history.max.entries.per.user con

figuration.

Run every day at 1PM.

task.purgeOldestNPasswordHistoryEntriesForAllUsers.cron = 0 0 1 * * ?

#END TASK WHICH PURGE LAST N PASSWORD HISTORY ENTRIES

ADVANCED CONFIGURATIONS 27

28 © 2006-2023 MUSEGLOBAL INC

4.0
Muse IDM as SAML 2.0
Identity Provider

Starting with version 2.1.0.0, Muse IDM can be configured as Identity Provider in SAML 2.0

authentication.

The SAML IDP is enabled by default, new Service Providers can configured in the WEB-

INF/config/saml-idp-context.xml file.

A new Service Provider entry can be configured by adding a new External Service Provider

Configuration bean under providers property list, located under identityProvider bean as

follow:

<bean

class="org.springframework.security.saml.provider.identity.config.ExternalS

erviceProviderConfiguration">

<property name="alias" value="SERVICE PROVIDER ALIAS" />

<property name="linktext" value="SERVICE PROVIDER ALIAS" />

<property name="skipSslValidation" value="true"/>

<property name="metadataTrustCheck" value="false"/>

<property name="metadata" value="URL TO SERVICE PROVIDER METADATA"/>

</bean>

The metadata property can be configured in three ways as following:

1 By providing a HTTP URL to the metadata of the Service Provider:

<property name="metadata"

value="https://service.provider:port/sp/metadata-location"/>

2 By providing the content of metadata as text in a CDATA tag as follow:

<property name="metadata">

<value>

<![CDATA[

MUSE IDM AS SAML 2.0 IDENTITY PROVIDER 29

Add here the content of Service Provider metadata file

]]>

</value>

</property>

3 By coping the metadata file in WEB-INF/classes/saml/metadata directory and refer it in

configuration file as follow:

<property name="metadata"

value="https://localhost:port/saml/sp/metadata/NAME_OF_COPIED_METADAT

A_FILE" />

This way to configure the Service Provider metadata file is useful when there is no way to access

the metadata using a URL, for example when URL is not accessible or the SSL certificate is

invalid.

The others properties of the External Service Provider Configuration bean can be changed

accordingly with Service Provider requirements.

Note: The username of authenticated user can be extracted at Service Provider level from name SAML

attribute.

Note: Any modification done in WEB-INF/config/saml-idp-context.xml configuration file

requires a server restart.

4.1 SAML Attribute Filter

For security reasons, in Muse IDM was added support to filter the user attributes exposed to configured

SAML Service Providers.

This filtering is done through WEB-INF/classes/saml_attribute_filter.json configuration

file which is defined as follow:

{

"serviceProviderEntityID" : [

"email",

"affiliation",

"userName",

"fullName",

"lastLogin",

30 © 2006-2023 MUSEGLOBAL INC

"status",

"roles",

"customAttribute_.*"

],

"serviceProviderEntityID2" : [

"email",

"lastLogin",

"customAttribute_phoneNumber"

],

...

}

Through this configuration file, the administrator of the system can decide which user attributes to expose

to which Service Provider based on their Entity ID's.

In previous example, for the SAML Service Provider with serviceProviderEntityID2 as Entity

ID, only the email, lastLogin and customAttribute_phoneNumber details of authenticated user

will be send to the serviceProviderEntityID2 Service Provider in the SAML response as

following:

<saml2:Attribute Name="email"

NameFormat="urn:oasis:names:tc:SAML:2.0:attrname-format:unspecified">

<saml2:AttributeValue

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:type="xsd:string">user@domain.com</saml2:AttributeValue>

</saml2:Attribute>

<saml2:Attribute Name="lastLogin"

NameFormat="urn:oasis:names:tc:SAML:2.0:attrname-format:unspecified">

<saml2:AttributeValue

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:type="xsd:anyType">2020-07-03T11:19:09.664</saml2:AttributeValue>

</saml2:Attribute>

<saml2:Attribute Name="customAttribute_phoneNumber"

NameFormat="urn:oasis:names:tc:SAML:2.0:attrname-format:unspecified">

<saml2:AttributeValue

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:type="xsd:string">0123456789</saml2:AttributeValue>

</saml2:Attribute>

If no attribute filter is defined for a specific Service Provider, the SAML IDP of IDM will expose only the

username(email) of the authenticated user in SAML response as follow:

MUSE IDM AS SAML 2.0 IDENTITY PROVIDER 31

<saml2:NameID Format="urn:oasis:names:tc:SAML:2.0:nameid-format:persistent"

SP

NameQualifier="https://rambo.museglobal.ro:9443/MKPF">username(email)</saml

2:NameID>

All supported user attributes which can be exposed to a specified Service Provider are:

✃ email

✃ affiliation

✃ userName

✃ fullName

✃ lastLogin

✃ status

✃ roles

✃ customAttribute_CUSTOM_ATTRIBUTE_NAME

Where the CUSTOM_ATTRIBUTE_NAME represents the name of the user custom attribute

configured in user attributes descriptor configuration file.

Note: Keep in mind that all these attribute names are represented as regular expressions. More details

about regular expressions can be found here

https://docs.oracle.com/javase/8/docs/api/java/util/regex/Pattern.html .

Note: For example, if customAttribute_.* is configured, then all custom attributes of the au

thenticated user will be send to the Service Provider.

4.2 SAML Attribute Mapping

Beside attribute filtering, in Muse IDM was added support to map the user SAML attributes exposed to

configured SAML Service Providers.

This mapping is done through WEB-INF/classes/saml_attribute_mapping.json configuration

file which is defined as follow:

{

32 © 2006-2023 MUSEGLOBAL INC

https://docs.oracle.com/javase/8/docs/api/java/util/regex/Pattern.html

"serviceProviderEntityID" : {

"affiliation" : "department",

"fullName" : "cn",

"customAttribute_phoneNumber" : "phoneNumber"

},

"serviceProviderEntityID2" : {

"email" : "username",

"customAttribute_street" : "address"

},

...

}

Through this configuration file, the administrator of the system can expose existing SAML attribute

names to the Service Provider with another SAML attribute name.

In previous example, for the SAML Service Provider with serviceProviderEntityID as Entity ID,

the affiliation attribute will be exposed as department, fullName as cn and cus

tomAttribute_phoneNumber as phoneNumber in the SAML response.

<saml2:Attribute Name="affiliation"
NameFormat="urn:oasis:names:tc:SAML:2.0:attrname-format:unspecified">

<saml2:AttributeValue
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:type="xsd:string">Management</saml2:AttributeValue>
</saml2:Attribute>
<saml2:Attribute Name="fullName"
NameFormat="urn:oasis:names:tc:SAML:2.0:attrname-format:unspecified">

<saml2:AttributeValue
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:type="xsd:anyType">John Doe</saml2:AttributeValue>
</saml2:Attribute>
<saml2:Attribute Name="customAttribute_phoneNumber"
NameFormat="urn:oasis:names:tc:SAML:2.0:attrname-format:unspecified">

<saml2:AttributeValue
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:type="xsd:string">0123456789</saml2:AttributeValue>
</saml2:Attribute>

In that case, previous user SAML attributes, after filtering is applied, will be converted into following

SAML attributes:

<saml2:Attribute Name="department"

NameFormat="urn:oasis:names:tc:SAML:2.0:attrname-format:unspecified">

<saml2:AttributeValue

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:type="xsd:string">Management</saml2:AttributeValue>

</saml2:Attribute>

<saml2:Attribute Name="cn"

NameFormat="urn:oasis:names:tc:SAML:2.0:attrname-format:unspecified">

<saml2:AttributeValue

MUSE IDM AS SAML 2.0 IDENTITY PROVIDER 33

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:type="xsd:anyType">John Doe</saml2:AttributeValue>

</saml2:Attribute>

<saml2:Attribute Name="phoneNumber"

NameFormat="urn:oasis:names:tc:SAML:2.0:attrname-format:unspecified">

<saml2:AttributeValue

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:type="xsd:string">0123456789</saml2:AttributeValue>

</saml2:Attribute>

Note: Mapping is applied after filtering process is done, so we can say that the filtering takes precedence

and should be properly configured before configuring SAML attributes mapping.

Note: All supported user attributes which can be mapped to a specified Service Provider can be found on

filtering SAML attributes section.

4.3 Muse Proxy configured as Service Provider

In order to add a Muse Proxy application as Service Provider in IDM SAML Identity Provider, the

following steps must be performed:

✃ The bean configuration must be added in IDM in WEB-

INF/config/saml-idp-context.xml configuration file under identityProvider:

<bean

class="org.springframework.security.saml.provider.identity.config.Exte

rnalServiceProviderConfiguration">

<property name="alias" value="MuseProxyAppID" />

<property name="linktext" value="MuseProxyAppID" />

<property name="skipSslValidation" value="true" />

<property name="metadata"

value="https://proxy.domain:port/ssoRWP/saml/metadata/alias/MuseProxyA

ppID"/>

</bean>

Make sure to replace MuseProxyAppID with the actual Muse Proxy application identifier.

Note: A restart of the Tomcat server is needed.

✃ Create the Muse Proxy application with the identifier as used at step #1, using the Muse Proxy

34 © 2006-2023 MUSEGLOBAL INC

Administrator Console;

✃ Generate the Service Provide (SP) metadata for the Muse Proxy application. For doing this follow

the instructions from the Muse Proxy Administrator Console, Configuration -> SAML Au

thentication -> Metadata administration -> Generate new service provide

metadata section;

Switch the authentication method of the Muse Proxy application to SAML.

✃ Add the IDM SAML IDP into Muse Proxy, through the Muse Proxy Administrator Console,

Configuration -> SAML Authentication -> Metadata administration -> Add

new identity provide metadata section. Use the By URL method and provide the

following URL for the IDM SAML Identity Provider metadata:

https://idm.domain:port/saml/idp/metadata

If the Muse IDM application is running in the same web server (Tomcat) as the MuseKnowledge

Search application, the URL becomes:

https://idm.domain:port/idm_webapp/saml/idp/metadata

where replace idm_webapp with the correct value.

✃ In Muse IDM, review the attributes exposed by editing the WEB-

INF/classes/saml_attribute_filter.json configuration file. Make sure the proper

Service Provider Entity ID corresponding to the Muse Proxy application is used.

4.4 MuseKnowledge Search application configured as
Service Provider

In order to add a MuseKnowledge Search application as Service Provider in IDM SAML Identity

Provider, the following steps must be performed:

✃ In Muse IDM, the below bean configuration must be added in WEB-

INF/config/saml-idp-context.xml configuration file under identityProvider bean:

<bean

class="org.springframework.security.saml.provider.identity.config.Exte

rnalServiceProviderConfiguration">

<property name="alias" value="MuseKnowledgeAppID" />

<property name="linktext" value="MuseKnowledgeAppID" />

MUSE IDM AS SAML 2.0 IDENTITY PROVIDER 35

<property name="skipSslValidation" value="true" />

<property name="metadata"

value="https://muse.domain:port/muse/saml/metadata" />

</bean>

Note: A restart of the Tomcat server is needed.

✃ Follow the Muse Web Bridge with SAML manual, chapter Setup a Muse Search

Application to Authenticate using SAML to configure the MuseKnowledge Search

application with SAML authentication.

✃ Add the IDM SAML IDP into MuseKnowledge Search, through the administration console

https://search.domain:port/muse/saml/web/metadata/login

Add new identity provider metadata. Use the By URL method and provide the

following URL for the IDM SAML Identity Provider metadata:

https://idm.domain:port/saml/idp/metadata

If the IDM application is running in the same web server (Tomcat) as the MuseKnowledge Search

application, the URL becomes:

https://idm.domain:port/idm_webapp/saml/idp/metadata

where replace idm_webapp with the correct value.

✃ In Muse IDM, review the attributes exposed by editing the WEB-

INF/classes/saml_attribute_filter.json configuration file. Make sure the proper

Service Provider Entity ID corresponding to the MuseKnowledge Search application is used

(default is https://search.domain:port/muse).

4.5 Rocket.Chat configured as Service Provider

In order to configure an instance of Rocket.Chat as Service Provider in IDM SAML Identity Provider,

the following steps must be performed:

✃ In IDM, the below bean configuration must be added in WEB-

INF/config/saml-idp-context.xml configuration file under identityProvider bean:

<bean

36 © 2006-2023 MUSEGLOBAL INC

https://rocket.chat/

class="org.springframework.security.saml.provider.identity.config.Exte

rnalServiceProviderConfiguration">

<property name="alias" value="Rocket.Chat" />

<property name="linktext" value="Rocket.Chat" />

<property name="skipSslValidation" value="true" />

<property name="metadata"

value="https://rocket.chat.domain:port/_saml/metadata/${CUSTOM_PROVIDE

R}" />

</bean>

Note: Every ${CUSTOM_PROVIDER} variable found need to be replaced with the value

configured in Rocket.Chat SAML administration console configured in Custom Provider

input field.

Note: A restart of the Tomcat server is needed.

✃ Configure the IDM as Identity Provider into Rocket.Chat, through his SAML administration

console as follows:

The value configured in Custom Provider input field represent an identifier used by

Rocket.Chat to generate the SP metadata and the value set here should replace every

${CUSTOM_PROVIDER} variable found in all configuration URL's.

The following value need to be configured for Custom Entry Point input field:

https://idm.domain:port/idm_webapp/saml/idp/SSO/alias/${IDM_IDP_ENTITY

_ID}

The following value need to be configured for IDP SLO Redirect URL input field:

https:/idm.domain:port/idm_webapp/saml/idp/logout/alias/${IDM_IDP_ENTI

TY_ID}

Note: The ${IDM_IDP_ENTITY_ID} need to be replaced with the value configured for

entityId property of identityProvider bean defined in WEB-

INF/config/saml-idp-context.xml configuration file.

The following value need to be configured for Custom Issuer input field:

https://rocket.chat.domain:port/_saml/metadata/${CUSTOM_PROVIDER}

✃ In Muse IDM, review the attributes exposed by editing the WEB-

INF/classes/saml_attribute_filter.json configuration file.

MUSE IDM AS SAML 2.0 IDENTITY PROVIDER 37

This configuration file must be configured to expose the email and fullname of authenticated user

in SAML attributes as follow:

{

"https://rocket.chat.domain:port/_saml/metadata/${CUSTOM_PROVIDER}":

[

"email",

"fullName"

]

}

✃ In Muse IDM, review the mapped attributes exposed by editing the WEB-

INF/classes/saml_attribute_mapping.json configuration file.

This configuration file should map the fullName SAML attribute defined in IDM to cn SAML

attribute name which is accepted by Rocket.Chat SP.

{

"https://rocket.chat.domain:port/_saml/metadata/${CUSTOM_PROVIDER}":

{

"email": "email",

"fullName": "cn"

}

}

Note: The value of ${CUSTOM_PROVIDER} need to be replaced with the value configured in

Rocket.Chat SAML administration console, defined in Custom Provider input field.

Note: If the Muse IDM application is running in a Servlet Container and the context path is set for

example to idm, then idm_webapp should be replaced by idm.

Note: More details about SAML configuration in Rocket.Chat administration console can be

found here.

38 © 2006-2023 MUSEGLOBAL INC

https://docs.rocket.chat/guides/administrator-guides/authentication/saml/rocket.chat-server-settings

5.0
Muse IDM as OAuth2
Authorization Server

Starting with version 2.1.0.0, Muse IDM has support to act as OAuth2 Authorization Server

for OAuth2 authentication.

A new menu item named OAuth2 was added in the Muse IDM application where helpful links can be

found which also helps the administrators manage OAuth2 client details.

Also on Clients page can be found the Authorization, Token and User Info endpoints which

need to be configured at client level.

These configuration links are:

✃ Authorization Endpoint : https://idm.domain:port/oauth/authorize

✃ Token Endpoint : https://idm.domain:port/oauth/token

✃ User Info Endpoint : https://idm.domain:port/oauth/userinfo

Note: Keep in mind that the Client Details secret is kept hashed in database and at client level the original

value must be configured. There is no way to recover the original value, if the original value is lost, then

the Client Secret can be updated from Edit Client Details page with a new value.

Note: IDM was successfully integrated and tested as OAuth2 Authorization Server with Muse

Proxy, miniOrange(an OAuth2 client for WordPress) and Moodle 3.7.1.

Note: The username can be extracted from name attribute of userinfo response.

MUSE IDM AS OAUTH2 AUTHORIZATION
SERVER 39

https://idm.domain.com:port/oauth/authorize
https://idm.domain.com:port/oauth/token
https://idm.domain.com:port/oauth/userinfo

40 © 2006-2023 MUSEGLOBAL INC

6.0
Muse IDM with HMAC
authentication

Muse IDM can be configured to authenticate Muse Proxy and Muse Knowledge products by

redirecting the authenticated users to these products with a generated HMAC link. Also another type of

web applications can be configured with this type of authentication if these recognize and can validate the

received HMAC link.

The pages where the HMAC can be configured for Muse Proxy and Muse Knowledge products can

be found in WEB-INF/jsp/access directory. There exists two JSP pages as follow:

1 muse.jsp web page which is used to generate the HMAC link recognized by a Muse

Knowledge application.

2 proxy.jsp web page which is used to generate the HMAC link recogized by a Muse Proxy

application.

Under the same directory, also exists the client.jsp web page which contains a simple HMAC

integration and can be easily changed accordingly with client requirements.

In both pages is necessary to configure the required authentication details such as WEB APPLICATION

URL, algorithm, secret and parameters which also need to be a perfect match with details

configured at application level where the IDM will redirect the successfully authenticated user.

Note: On WEB-INF/config/security-context.xml configuration file, under redirectUrls

property, from customLogoutSuccessHandler bean, can be configured a map with allowed redirect

URL used by IDM to redirect the authenticated user to those URL's based on clientID parameter

name on a logout request with clientID parameter.

Note: An example of logout request is:

https://idm.domain:port/logout?clientID=IDMHMAC, in that case, after accessing previous

link, the authenticated user will be redirected to the URL identified by IDMHMAC key from re

directUrls map.

MUSE IDM WITH HMAC AUTHENTICATION 41

42 © 2006-2023 MUSEGLOBAL INC

7.0
Internationalization
support

Starting with version2.1.0.0, Muse IDM is fully internationalized through messages files located under

WEB-INF/classes/i18n directory.

The structure of WEB-INF/classes/i18n internationalization directory can be represented as

following:

✃ core - there are all messages which are read by Server and are send as response for different

requests such as user deletion, successful registration etc. .

✃ security - there are all messages related with authentication failure such as Invalid username,

Account blocked etc. .

✃ web - these are all messages refered in JSP files for titles, descriptions, labels or table headers etc. .

In order to add a new locale the following steps are required:

✃ Make a copy of english messages.properties from WEB-INF/classes/i18n directory and

append the locale at the end of properties file name as follow: messages_es.properties for

spanish language.

✃ Make a copy of english email templates from WEB-INF/classes/emailTemplates directory

and append the locale at the end of email template file name as follow: ac

countApproved_es.ftl for spanish language.

✃ Translate the content of copied files in required language(to follow the examples, then the files

need to be translated in spanish in that case). For messages.properties files, only the value

need to be translated, the key must not change, but the entire content of email templates need to

be translated.

All configurations related with internationalization can be found in WEB-

INF/classes/application.properties configuration file. These configurations are:

INTERNATIONALIZATION SUPPORT 43

#START LOCALIZATION CONFIGURATION

The locale parameter name used to change the locale. For example if is

required to change the language to spanish, a request with languageCode=es

parameter will achieve this.

locale.paramName = languageCode

Used to specify the default locale.

locale.default = en

With which encoding the localization files will be read.

locale.defaultEncoding = UTF-8

locale.useCodeAsDefaultMessage = true

locale.cacheSeconds = 0

#END LOCALIZATION CONFIGURATION

List with all supported locales:

en,ro,ar,el,es,fr,ja,nl,de,tr,zh_CN,zh_TW

Empty locale list will no display any entry on menu.

locale.enabled = en,ro,ar,el,es,fr,ja,nl,de,tr,zh_CN,zh_TW

44 © 2006-2023 MUSEGLOBAL INC

8.0
Theme Support

The look and feel of the Muse IDM application is controlled by a theme, several predefined theme are

available and can be set as the default theme.

Configurations related to the application's theme can be found in WEB-

INF/classes/application.properties configuration file and are represented by following con

figuration entries:

#START THEME CONFIGURATION

The name of parameter used to change the theme. For example if is

required to change the theme to gray, a request with theme=gray parameter

will achieve this.

theme.paramName = theme

Used to speciofy the default theme.

theme.defaultThemeName = default

The name of directory from WEB-INF/classes directory where all themes are

conbfigured in properties files.

theme.baseNamePrefix = theme/

theme.cookieName = theme

#END THEME CONFIGURATION

Flag configuration used to display or not the Themes menu entry on web

interface

themes.menu.enabled = true

In order to add a new theme the following steps are required:

✃ Add a new properties file in WEB-INF/classes/theme directory with the name of the theme

represented by THEME_NAME variable with following content:

theme.css = THEME_NAME.css

theme.adds.css = THEME_NAME_adds.css

theme.custom.css = THEME_NAME_custom.css

THEME SUPPORT 45

✃ Make sure that in the WEB-INF/static-resources/css/themes directory exists the

following files: THEME_NAME.css, THEME_NAME_adds.css and THEME_NAME_custom.css

whiche were already provided in the theme configuration file defined on previous step.

✃ Add the new configured theme under Themes header entry from WEB-

INF/jsp/include/header.jsp file.

Note: The theme name is represented by the name of a properties files from WEB-

INF/classes/theme directory.

Note: Supported themes out of the box are: amelia, brown, dark, darkblue, default, gray,

purple, and white.

46 © 2006-2023 MUSEGLOBAL INC

9.0
User Custom Attributes

Starting with version 2.1.0.0, was added support for custom attributes for all users which register

within the Muse IDM application.

These custom attributes are configured in the user attributes descriptor configuration file found on WEB-

INF/classes/user_attributes_descriptor.json JSON configuration file.

This user attributes descriptor file can be represented as following:

{

"descriptors":[

{

"name":"department",

"required":true,

"defaultValue":null,

"dataType":"SELECT",

"adminOnly":true,

"values":{

"Production":"Production",

"Purchasing":"Purchasing",

"Human Resource Management":"Human Resource Management",

"Accounting and Finance":"Accounting and Finance",

"Research and Development":"Research and Development"

},

"properties":{

"iconClassName":"fa fa-list fa-fw"

},

"errorCode":"custom_attributes.department.error",

"pattern":null

},

{

"name":"position",

"required":true,

"defaultValue":null,

"dataType":"TEXT",

USER CUSTOM ATTRIBUTES 47

"adminOnly":false,

"properties":{

"iconClassName":"fa fa-clipboard fa-fw"

},

"errorCode":"custom_attributes.position.error",

"pattern":null

},

{

"name":"mobileNumber",

"required":true,

"defaultValue":null,

"dataType":"NUMBER",

"properties":{

"iconClassName":"fa fa-phone fa-fw"

},

"errorCode":"custom_attributes.mobileNumber.error",

"pattern":"^(\\+\\d{1,2}\\s)?\\(?\\d{3}\\)?[\\s.-]?\\d{3}[\\s.-]?\\d{4}$"

},

{

"name":"accessReason",

"required":true,

"defaultValue":null,

"dataType":"TEXT_AREA",

"properties":{

"iconClassName":"fa fa-universal-access fa-fw"

},

"errorCode":"custom_attributes.accessReason.error",

"pattern":null

}

]

}

One important configuration of a custom field is adminOnly which is a boolean configuration value

used to specify that the custom attribute can be edited only by the users with ADMIN and SUPER_ADMIN

roles. Default value of this configuration is false.

Internationalization of these custom attributes is done through WEB-

INF/classess/i18n/web/messages.properties internationalization file as follow:

custom_attributes.mobileNumber.label = Mobile number
custom_attributes.mobileNumber.placeholder = Your mobile number
custom_attributes.mobileNumber.hint = Following formats are accepted:
0123456789, 012-3456-789 or 012 345 6789.
custom_attributes.mobileNumber.error = Provided mobile number is invalid.

48 © 2006-2023 MUSEGLOBAL INC

As you can see the attribute name mobileNumber is prefixed by custom_attributes and a label,

placeholder, hint and error message is provided for this attribute.

For each attribute defined in descriptor file, it must exist defined at least the label, placeholder,

error and errorCode messages.

Note: The attribute name must be unique and not null.

Note: All changes from user attributes descriptor file doesn't require a server restart.

Note: The errorCode defined for an attribute descriptor need to exists in the

messages.properties file. This error message will be displayed when the value cannot be validated

against the configured pattern.

Note: If the user custom attributes are not necessary for a client, the content of user attributes descriptor

file need to be replaced with following content:

{

"descriptors": []

}

USER CUSTOM ATTRIBUTES 49

50 © 2006-2023 MUSEGLOBAL INC

10.0
Limit Login Attempts

Limit login attempts is a new feature which was introduced in 2.1.0.0 version and which limits the

number of retry attempts when a user tries to log in (this is based on client IP address and username).

This new feature blocks attackers which try to brute force the login form by submitting different

combinations of username and password in order to guess the access details of a real user from Muse

IDM. In these type of attacks, the attacker aims to access the protected resources of the application.

The login limits feature can be configured through the following entries from WEB-

INF/classes/application.properties configuration file:

#START LOGIN ATTEMPT CONFIGURATION

Flag configuration which enable or disable the login attempt feature.

Default value is false.

login.attempt.enabled = true

This configuration specifies the maximum number of failed login attempts

after which the login process will be blocked for user who pass this value.

Default value is set to 3.

login.attempt.maxAttempts = 3

The size of the In-Memory Cache which will hold all login attempts. After

this size is exceeded, the oldest entries will be removed. Default value is

8192.

login.attempt.cacheMaximumSize = 8192

This configuration represents the amount of time the user will be

blocked, elapsed from the last failed login attempt submitted in the same

period of time.

For example if this configuration is set to 5 minutes and a user will

send invalid credentials 3 times or more(the number of maximum attempts set

for "login.attempt.maxAttempts" configuration) in 5 minutes, then the user

will be blocked for 5 minutes after last failed login.

This value is parsed as java.time.Duration. Default value is 5 minutes.

login.attempt.expireAfterWrite = PT5M

#END LOGIN ATTEMPT CONFIGURATION

LIMIT LOGIN ATTEMPTS 51

52 © 2006-2023 MUSEGLOBAL INC

11.0
Session Management

The session management feature was introduced in 2.1.1.0 version and is used to limit the maximum

number of concurrent sessions per user. Support for realtime statistics is also available, such as: current

active sessions or most active users based on number of sessions and many more.

Besides global configurations, each user has associated a maximum concurrent sessions configuration field

which is visible only for the administrators of the system.

This can be configured through following configuration entries from the WEB-

INF/classes/application.properties configuration file defined as follow:

#START SESSION MANAGEMENT CONFIGURATION

Global configuration which sets the maximum number of concurrent sessions

allowed for each user.

Also each user can have configured a maximum number of concurrent

sessions and this value will take precedence and will be used instead of

this global value.

This default value will be used if the value configured for maximum

concurrent sessions for a user is set to 0.

sessionManagement.maximumConcurrentSessionsPerUser = -1

Flag configuration used to specify if an exception will be trown when

configured number of concurrent sessions is exceeded.

If true, it will display an error message on login page and the user

can't authenticate anymmore.

If false, the user will be authenticated and his associated oldest

sessions will be invalidated.

sessionManagement.exceptionIfMaximumSessionsExceeded = true

User session expiration expressed in seconds.

sessionManagement.maxInactiveIntervalInSeconds = 3600

The page where an authenticated user will be redirected if his session

expires.

sessionManagement.expiredSessionUrl = /expired-session

#END SESSION MANAGEMENT CONFIGURATION

SESSION MANAGEMENT 53

54 © 2006-2023 MUSEGLOBAL INC

12.0
Payment Feature

Starting with version 2.1.0.5, in Muse Identity Manager was added support to configure a Payment

Platform. This platform will be used by newly registered users to pay a subscription fee before accessing

Muse IDM resources: Client Applications and User Profile Page and the external ap

plications .

The configurations for the payment integrations are in the WEB-

INF/classess/application.properties configuration file.

This configuration is defined as follow:

The type of payment used after a successful registration. Supported

values are: paystack, stripe, verifone and none. If no value is set then

the default one will be "none".

registration.payment.type = none

In that case, before configuring one of Paystack or Stripe Payment Providers, the administrator will

configure first the value of registration.payment.type configuration. For example if the client

use Stripe as Payment Provider, the administrator will configure registration.payment.type =

stripe. If no payment is required then the value of this configuration should be set to none.

The Payment flow is described through following diagram:

PAYMENT FEATURE 55

56 © 2006-2023 MUSEGLOBAL INC

Figure 1. Payment Flow Diagram

12.1 Stripe Integration

The payment feature was successfully tested with Stripe Payment Platform and can be configured through

following configuration file: WEB-INF/classess/payment_stripe.json.

This configuration file is described as follow:

{

"enabled": true,

"publicKey": "pk_*",

"secretKey": "sk_*",

"webhookKey": "whsec_*",

"domain": "https://idm.domain:port/idm_webapp/payment/stripe",

"priceId": "price_*"

}

The enabled configuration entry is described as a flag configuration and is used to enable or disable the

Stripe Payment feature. Default value for this configuration is false if no value is provided.

The publicKey, secretKey, webhookKey and priceId configurations can be found in Stripe

Dashboard administration console.

The priceId is generated when a new product is added through Stripe Dashboard.

The domain configuration need to be properly configured based on current URL of Muse IDM and this

configuration will be used to create the Success URL (the Muse IDM page where user will be

redirected after a successful payment) and Cancel URL (the Muse IDM page where user will be

redirected if the payment is cancelled).

Because Muse IDM is based on Stripe Webhook Events to update the payment status of newly

registered users, in Stripe Dashboard, the administrator must configure a Stripe Webhook with the

following URL:

✃

https://idm.domain:port/idm_webapp/payment/stripe/webhook

where replace idm_webapp with the correct value.

PAYMENT FEATURE 57

https://stripe.com/
https://dashboard.stripe.com/
https://dashboard.stripe.com/
https://dashboard.stripe.com/
https://dashboard.stripe.com/

and following event types:

✃ invoice.paid

✃ subscription_schedule.expiring

Note: All changes from payment_stripe.json configuration file don't require a server restart.

12.2 Paystack Integration

Starting with 2.1.0.7 version, in Muse Identity Manager was added support for Paystack Payment

Platform and can be configured through the following configuration file WEB-

INF/classess/payment_paystack.json.

This configuration file is described as follow:

{

"enabled": false,

"publicKey": "",

"secretKey": "",

"domain": "https://idm.domain:port/idm_webapp/payment/paystack",

"oneTimePayment": {

"amount": "10000", // this value is equivalent to 100 NGN.

"userAccountExpiryAfter": "P2Y" // after a successfull

One-Time Payment the user account will expiry after two years.

},

"plans": [

{

"code": "PLN_xxxxxxxxx",

"name": "Monthly Plan"

},

{

"code": "PLN_yyyyyyyyy",

"name": "Yearly Plan"

}

]

}

The enabled configuration entry is a flag used to enable or disable the Paystack Payment feature.

Default value for this configuration is false if no value is provided.

58 © 2006-2023 MUSEGLOBAL INC

https://paystack.com/
https://paystack.com/

The publicKey and secretKey configurations can be found in Paystack Dashboard administration

console.

The domain configuration need to be properly configured based on current URL of Muse IDM and this

configuration will be used to create the Success URL(the Muse IDM page where user will be

redirected after a successful payment) and Cancel URL(the Muse IDM page where user will be

redirected if the user cancel his payment).

Because Muse IDM is based on Paystack Webhook Events to update the payment status of newly

registered users, in Paystack Dashboard, the administrator must configure a Paystack Webhook with

following URL:

https://idm.domain:port/idm_webapp/payment/paystack/webhook

Note: The idm_webapp should be replaced with the correct value if Muse IDM runs in Tomcat in

webapps directory.

Following webhook event types are supported for this integration:

✃ charge.success

✃ subscription.disable

The Paystack Payment Integration can be configured in two ways:

1 One-Time Payment with a fixed amount.

To enable this type of payment, in the configuration file must exists the oneTimePayment con

figuration defined as follow:

"oneTimePayment": {

"amount": "10000", // this value is equivalent to 100 NGN.

"userAccountExpiryAfter": "P2Y" // after a successfull One-

Time Payment the user account will expiry after two years.

}

The value for amount configuration is represented as cents and configured amount must be

multiplied by 100, for example the 10000 value will be equivalent with 100 NGN.

The value of userAccountExpiryAfter is parsed as java.time.Period and describe the

period of time until the user account will be enabled after a successful payment.

Note: This type of payment will be used only if there is no value set for plan in configuration.

PAYMENT FEATURE 59

https://dashboard.paystack.com/
https://dashboard.paystack.com/#/settings/developer

2 Recurring Payment using Paystack Plans.

For this integration, multiple plans can be configured, which can be created from Paystack

Dashboard Plans dashboard page.

Any plan created will have a code with following form PLN_xxxxxxxxx and this value should

be copied and configured under plans configuration from JSON configuration file.

One plan configuration is described as follows in configuration file under plans configuration

entry:

{

"code": "PLN_xxxxxxxxx",

"name": "Yearly Plan"

}

The value for code represents the plan code generated in the Paystack dashboard plans page.

The value set for name is used only to easily distinguish between the plans.

To customize the messages from intermediary payment page, the page where a user can select a plan, the

following entries from WEB-INF/classes/i18n/web/messages.properties localization file

must be changed accordingly:

payment.paystack.plan.PLN_xxxxxxxxx.name = Daily Plan

payment.paystack.plan.PLN_xxxxxxxxx.description = The daily plan is an

automatically recurring payment. You will be billed once every day until

you wish to cancel.

payment.paystack.plan.PLN_xxxxxxxxx.amount = 100 NGN

payment.paystack.plan.PLN_yyyyyyyyy.name = Monthly Plan

payment.paystack.plan.PLN_yyyyyyyyy.description = The monthly plan is an

automatically recurring payment. You will be billed once every month until

you wish to cancel.

payment.paystack.plan.PLN_yyyyyyyyy.amount = 1.000 NGN

Previous messages are constructed based on configured plan codes, so in that case the PLN_xxxxxxxxx

and PLN_yyyyyyyyy need to be modified accordingly with configured plan codes in

payment_paystack.json configuration file.

If One-Time Payment is used, then following messages need to be changed accordingly, located in the

same localization file as previous messages:

60 © 2006-2023 MUSEGLOBAL INC

https://dashboard.paystack.com/#/plans/
https://dashboard.paystack.com/#/plans/

Start Paystack Payment - One-Time Payment messages

payment.paystack.one_time_payment.name = One Time Payment

payment.paystack.one_time_payment.description = One Time Payment

payment.paystack.one_time_payment.amount = 2000 NGN

Note: The One-Time Payment and Recurring Payments configurations are exclusive, if both are

properly configured then Recurring Payments takes precedence. In order to use only the One-Time

Payment then the plans configuration entry need to be removed from configuration file.

Note: All changes from payment_paystack.json configuration file don't require a server restart.

12.3 Verifone Integration

Starting with 2.1.0.7 version, in Muse Identity Manager was added support for Verifone Payment

Platform and can be configured through following configuration file WEB-

INF/classess/payment_verifone.json.

This configuration file is described as follow:

{

"enabled": false,

"secretKey": "",

"domain": "https://idm.domain:port/idm_webapp/payment/verifone",

"testMode": false,

"productId": "",

"merchantCode": ""

}

The enabled configuration entry is described as a flag configuration and is used to enable or disable the

Verifone Payment feature. Default value for this configuration is false if no value is provided.

The testMode configuration mode is described as a flag configuration and is used only for testing

purposes.

The secretKey, productId and merchantCode configuration values can be found in Verifone

Dashboard. The productId represent the product identifier from Verifone Dashboard platform

and has the following form 12345678(not to be confused with product code).

The domain configuration need to be properly configured based on current URL of Muse Identity

Manager and this configuration will be used to create the Success URL(the Muse IDM page where

PAYMENT FEATURE 61

https://www.2checkout.com/
https://www.2checkout.com/
https://secure.2checkout.com/cpanel/
https://secure.2checkout.com/cpanel/

user will be redirected after a successful payment) and Cancel URL(the Muse IDM page where user will

be redirected if the user cancel his payment).

Note: Also the idm_webapp should be replaced with the correct value if Muse IDM runs in Tomcat in

webapps directory.

Following changes must be done in Verifone Dashboard for this integration with Muse Identity

Manager:

✃ Under Setup menu item, Products menu item can be found ant this link will redirect the ad

ministrator to all products page where a new product must be added with required payment details.

Generated product identifier will be configured in payment_verifone.json configuration file

for this integration.

✃ In Integrations page, under IPN settings tab, following IPN URL should be configured.

https://idm.domain:port/idm_webapp/payment/verifone/webhook

✃ In Integrations page, under IPN settings tab, following Response tags should be

checked as well: AVANGATE_CUSTOMER_REFERENCE and EXTERNAL_CUSTOMER_REFERENCE.

Note: All changes from payment_verifone.json configuration file don't require a server restart.

62 © 2006-2023 MUSEGLOBAL INC

13.0
User Password History

The Password History feature aims to keep a history of user password changes and is used to determine

the number of unique passwords a user must use before they can use an old password again. This is an

important setting because password reuse is a common issue – the more often the same (or similar)

password is used, the greater chance that the password will be compromised in some way, for example

through brute force.

This feature can be configured in WEB-INF/classess/application.properties configuration

file as follow:

The maximum password history which will be kept for an user represented

as integer. Default value is 5.

password.history.max.entries.per.user = 5

Note: Keep in mind that this feature is related with a database task from Configuring Tasks section which

purge the latest N login history for all users.

USER PASSWORD HISTORY 63

64 © 2006-2023 MUSEGLOBAL INC

14.0
User Password Expiration

Password Expiry is a mechanism used to request users to change their passwords after a specified period of

time, for example 3 or 6 months. The default value for password expiration is 3 months.

This feature is implemented in Muse IDM by redirecting the user with an expired password to a page,

with limited rights, where he can set a new password. After a successfull password changing, the new

password will be saved in his password history. Also here, when the user tries to set a new password, he

can't use an old password, because the rules defined by Password History feature are applied.

The user password lifetime can be configured in WEB-INF/classess/application.properties

configuration file as follows:

The configuration which set the user password life time. Is parsed as

java.util.Period and more details about the format of this configuration

can be found here:

https://docs.oracle.com/javase/8/docs/api/java/time/Period.html#parse-java.

lang.CharSequence-. Default value is P3M which represent 3 months.

user.password.life.time = P3M

Note: The user can't authenticate in Muse IDM until he changes his expired password.

USER PASSWORD EXPIRATION 65

66 © 2006-2023 MUSEGLOBAL INC

15.0
Automatic Registration for
Allowed Emails

This feature was introduced in version 2.1.0.7 and represents a new registration flow which is used to

automatically register a user if the email he used for self-registration matches the configured allowed email

domains.

When this registration flow is enabled, the registered emails which don't match the configured allowed

domains, still can register but they need administrator approval.

This configuration takes precedence over registration.admin.approval configuration.

To enable this registration flow, the following configuration entry from WEB-

INF/classess/application.properties file need to be modified as following:

Flag used to automate the self registration to not require the admin

approval when registered email matches configured allowed emails under "re

gistration.allowed.email" configuration entry.

At least one allowed email need to be configured when this configuration

is enabled, otherwise the application will not start.

Default value is set to false.

registration.automatic.for.allowed.emails = true

Note: At least one allowed email domain need to be configured when this configuration is enabled,

otherwise the application will not start.

This registration flow is described in following flow diagram:

AUTOMATIC REGISTRATION FOR ALLOWED
EMAILS 67

Figure 2. Automatic Registration for Allowed Emails Flow Diagram

68 © 2006-2023 MUSEGLOBAL INC

16.0
Registration Advanced
Field Validation

Because some user fields requires advanced validation on registration forms, it was added support to

configure regular expressions to validate these fields.

Currently it is supported to specify patterns (regular expressions) for the following fields:

✃ User Full Name

✃ User Password

These patterns can be configured in WEB-INF/classess/application.properties configuration

file under the following configuration entries:

The regular expression pattern used to validate the full name field from

self-registration and profile forms.

If this configuration is not set then the full name should not be blank.

registration.fullName.pattern =

The regular expression used to validate the password on registration

process.

password.pattern =

The full name pattern validation applies on the following forms:

✃ User profile

✃ Self registration

The password pattern validation applies on the following forms:

✃ User add and edit by administrator

✃ User profile

REGISTRATION ADVANCED FIELD
VALIDATION 69

✃ Reset expired password

✃ Reset password

✃ Self registration

Note: When a pattern is created for any of these configurations make sure that are syntactically valid and

properly escaped, otherwise the Muse IDM application will not start and an error will be logged.

70 © 2006-2023 MUSEGLOBAL INC

17.0
Configure Shibboleth IDP
with SQL authentication

Because the users are stored in a MySQL database and managed by the Muse IDM web application, you

can configure (Shibboleth) as Identity Provider (IDP) for SAML authentication purpose.

Note: Because in a SAML authentication the time synchronization is crucial, before starting to install the

necessary software you must to make sure that the time of current server is synchronized.

ntpdate -s time.nist.gov

17.1 Install Shibboleth on CentOS 7.6

The steps required to install Shibboleth on CentOS 7.6 are described below as follow:

17.1.1 Install latest JDK 8 available

In order to install the latest available JDK, follow the steps described below:

1 Remove OpenJDK if is already installed by using the following commands:

java -version

rpm -qa | grep openjdk

yum remove -y java-

1.7.0-openjdk-headless-1.7.0.91-2.6.2.1.el7_1.x86_64

2 Install the latest Java 1.8 JDK and set the JAVA_HOME environment variable. You can access this

link for more details.

17.1.2 Install and configure Tomcat for Shibboleth

CONFIGURE SHIBBOLETH IDP WITH SQL AU
THENTICATION 71

https://www.shibboleth.net/
https://www.liquidweb.com/kb/install-java-8-on-centos-7/

IDP

The following steps are required in order to install and configure the Tomcat Servlet Container:

1 Download the latest Apache Tomcat and install it under opt/tomcat directory.

2 Increase the JVM memory of Tomcat by creating the /opt/tomcat/bin/setenv.sh file
with the following content:

CATALINA_OPTS="-Xmx2048m -XX:MaxPermSize=256m"

3 Make the newly created file executable by using the following command:

chmod +x /opt/tomcat/bin/setenv.sh

4 Make sure that 80 and 443 ports are not in use and edit /opt/tomcat/conf/server.xml
and modify the Connector Ports as follow: (8080 -> 80 and 8443 -> 443).

5 Add the following SSL connector entry in the /opt/tomcat/conf/server.xml con
figuration file:

<!-- Shibboleth -->
<Connector port="443"
protocol="org.apache.coyote.http11.Http11NioProtocol"
maxThreads="150" SSLEnabled="true" scheme="https"

secure="true" clientAuth="want"
keystoreFile="/opt/shibboleth-idp/credentials/idp-backchannel.p12"
keystorePass="changeit" keystoreType="PKCS12"

trustMan
agerClassName="net.shibboleth.utilities.ssl.TrustAnyCertificate" />

6 Replace keystoreFile and keystorePass attributes value according to your IDP install
directory.

7 Download trust any SSL library and put it in the /opt/tomcat/lib directory:

cd /opt/tomcat/lib
wget
https://build.shibboleth.net/nexus/service/local/repositories/release
s/
content/
net/shibboleth/utilities/trustany-ssl/1.0.0/trustany-ssl-1.0.0.jar

17.1.2.1 Install Shiboleth IDP

The steps necessary to install Shibboleth IDP are:

1 Download the latest IDP Shibboleth by accessing this link in the opt folder as following (current

version is 3.4.3):

cd /opt

wget

http://shibboleth.net/downloads/identity-provider/latest/shibboleth-i

72 © 2006-2023 MUSEGLOBAL INC

https://tomcat.apache.org/download-90.cgi
http://shibboleth.net/downloads/identity-provider/latest

dentity-provider-3.4.3.tar.gz

tar xvfz shibboleth-identity-provider-3.4.3.tar.gz

cd shibboleth-identity-provider-3.4.3/bin/

2 Run ./opt/shibboleth-idp/bin/install.sh script in order to obtain the war file

which will be deployed in Tomcat.

3 The result of executing the previous script is:

Source (Distribution) Directory:

[/opt/shibboleth-identity-provider-3.4.3]

Installation Directory: [/opt/shibboleth-idp]

Hostname: [shibboleth.your-domain.ro]

SAML EntityID: [https://shibboleth.your-domain.ro/idp/shibboleth]

Attribute Scope: [your-domain.ro]

Backchannel PKCS12 Password:changeit

Re-enter password:changeit

Cookie Encryption Key Password:changeit

Re-enter password:changeit

Warning: /opt/shibboleth-idp/bin does not exist.

Warning: /opt/shibboleth-idp/dist does not exist.

Warning: /opt/shibboleth-idp/doc does not exist.

Warning: /opt/shibboleth-idp/system does not exist.

Warning: /opt/shibboleth-idp/webapp does not exist.

Generating Signing Key, CN = shibboleth.your-domain.ro URI =

https://shibboleth.your-domain.ro/idp/shibboleth ...

...done

Creating Encryption Key, CN = shibboleth.your-domain.ro URI =

https://shibboleth.your-domain.ro/idp/shibboleth ...

...done

Creating Backchannel keystore, CN = shibboleth.your-domain.ro URI =

https://shibboleth.your-domain.ro/idp/shibboleth ...

...done

Creating cookie encryption key files...

...done

Rebuilding /opt/shibboleth-idp/war/idp.war ...

...done

BUILD SUCCESSFUL

CONFIGURE SHIBBOLETH IDP WITH SQL AU
THENTICATION 73

Total time: 2 minutes 1 second

17.2 Deploy Shibboleth in the Tomcat Servlet
Container

The necessary steps to deploy the Shibboleth IDP in the Tomcat Servlet Container are:

1 Copy /opt/shibboleth-idp/war/idp.war file to /opt/tomcat/webapps directory.

cp /opt/shibboleth-idp/war/idp.war /opt/tomcat/webapps

2 Start Tomcat by running the following script ./opt/tomcat/bin/startup.sh and wait to
deploy the idp.war web application.

3 Shutdown Tomcat by running the following script ./opt/tomcat/bin/shutdown.sh and
wait until server successfully shutdown.

4 Delete the /opt/tomcat/webapps/idp.war war file by using the following command:

rm /opt/tomcat/webapps/idp.war

5 Edit /opt/tomcat/webapps/idp/WEB-INF/web.xml configuration file and add the
following context parameter:

<!-- #Added IDP location -->
<context-param>

<param-name>idp.home</param-name>
<param-value>/opt/shibboleth-idp</param-value>

</context-param>

6 In order to view the IDP status, add in the /
opt/shibboleth-idp/conf/access-control.xml configuration file the allowed IPs as
follow:

<entry key="AccessByIPAddress">
<bean parent="shibboleth.IPRangeAccessControl"

p:allowedRanges="#{ {'127.0.0.1/32', '::1/128',
'YOUR_IP_AS_CIDR' } }" />
</entry>

7 Download JSTL tag library and put it into the IDP lib directory as follow:

cd /opt/tomcat/webapps/idp/WEB-INF/lib/
wget
https://build.shibboleth.net/nexus/service/local/repositories/thirdpa
rty/content/javax/servlet/jstl/1.2/jstl-1.2.jar

8 Start Tomcat and check if the status page works by accessing this link
http://shibboleth.your-domain.ro/idp/status.

74 © 2006-2023 MUSEGLOBAL INC

http://shibboleth.your-domain.ro/idp/status

17.2.1 Configure Shibboleth to use the MySQL
Database for authentication

The steps required to configure the MySQL authentication for the installed Shibboleth IDP are:

1 Download the MySQL Login module by accessing this link, or download the project from here,
customize by your requirements and compile classes using ant deploy command inside of the
project.

2 Copy the JAAS login module library under /opt/tomcat/webapps/idp/WEB-INF/lib
directory.

3 Download the MySQL JDBC driver for your DBMS. For MySQL the latest available driver is
mysql-connector-java-8.0.17.jar and can be downloaded from here.

4 Copy the driver library under /opt/tomcat/webapps/idp/WEB-INF/lib directory.

Note: You can copy these two libraries jaas_relational_login.jar and mysql-

connector-java-8.0.15.jar under /

opt/shibboleth-idp/edit-webapp/WEB-INF/lib directory.

Note: Run /opt/shibboleth-idp/bin/build.sh script to rebuild the IDP web

application. Deploy the newly built application into /opt/tomcat/webapps directory by

following the steps described in this section.

5 Create or replace the content of the /opt/shibboleth-idp/conf/authn/jaas.config
configuration file with the following content:

ShibUserPassAuth {
relationalLogin.DBLogin required debug=true
dbDriver="com.mysql.cj.jdbc.Driver"
userTable="USERS_TABLE_NAME"
userColumn="USER_NAME_COLUMN_NAME"
passColumn="PASSWORD_COLUMN_NAME"
dbURL="jdbc:mysql://localhost:3306/IDM_DATABASE"
dbUser="DATABASE_USER_NAME"
dbPassword="DATABASE_USER_PASSWORD"
hashAlgorithm="SHA-512"
saltColumn=""
errorMessage="Invalid password";

};

6 Edit previous JAAS configuration file as required including the relevant data according to your
DBMS configuration.

Note: If in your users table you have a salt stored in a column, set it in saltColumn, parameter,

otherwise leave it blank, or omit it. The salted hash will be calculated as hash(password + salt).

Note: In the case you wish to use cleartext password, leave the hashAlgorithm blank or omit

it. This is not recommended and IDM application does not store the plain password.

Note: Available hashing algorithms are DBMS native hashing functions such as SHA-1, SHA-256,

CONFIGURE SHIBBOLETH IDP WITH SQL AU
THENTICATION 75

https://robertogallea.com/posts/development/shibboleth-using-relational-dbms-as-authentication-backend/attachments/jaas_relational_login.jar
https://github.com/robertogallea/jaas_relational_login
http://central.maven.org/maven2/mysql/mysql-connector-java/8.0.17/mysql-connector-java-8.0.17.jar

SHA-384 and SHA-512.

Note: More details about the MySQL authentication configuration can be found at this link.

7 Open the /opt/shibboleth-idp/conf/authn/password_authn_config.xml con
figuration file, uncomment <import resource="jaas-authn-config.xml"> line and
comment the others import tags.

8 Restart the Tomcat Servlet Container and try to authenticate to Shibboleth IDP with a user
defined in the configured database.

17.3 Configure Shibboleth to extract and export the
user attributes

In order to extract the necessary user attributes from database for authenticated user and pass them to the

service provider as SAML2 attributes, follow the instructions as described below:

1 Replace the content of the /opt/shibboleth-idp/conf/attribute-resolver.xml

configuration file with the following:

<?xml version="1.0" encoding="UTF-8"?>

<!--

This file is an EXAMPLE configuration file containing lots of

commented

example attributes, encoders, and a couple of example data

connectors.

Not all attribute definitions or data connectors are

demonstrated, but

a variety of LDAP attributes, some common to Shibboleth

deployments and

many not, are included.

Deployers should refer to the Identity Provider 3 documentation

https://wiki.shibboleth.net/confluence/display/IDP30/AttributeResolve

rConfiguration

for a complete list of components and their options.

-->

<AttributeResolver

xmlns="urn:mace:shibboleth:2.0:resolver"

76 © 2006-2023 MUSEGLOBAL INC

https://robertogallea.com/posts/development/shibboleth-using-relational-dbms-as-authentication-backend

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="urn:mace:shibboleth:2.0:resolver

http://shibboleth.net/schema/idp/shibboleth-attribute-resolver.xsd">

<!-- == -->

<!-- Attribute Definitions -->

<!-- == -->

<!-- Schema: Core schema attributes-->

<AttributeDefinition xsi:type="Simple" id="uid">

<InputDataConnector ref="mySIS" attributeNames="uid"/>

<AttributeEncoder xsi:type="SAML1String"

name="urn:mace:dir:attribute-def:uid" encodeType="false" />

<AttributeEncoder xsi:type="SAML2String"

name="urn:oid:0.9.2342.19200300.100.1.1" friendlyName="uid"

encodeType="false" />

</AttributeDefinition>

<AttributeDefinition xsi:type="Simple" id="mail">

<InputDataConnector ref="mySIS" attributeNames="mail"/>

<AttributeEncoder xsi:type="SAML1String"

name="urn:mace:dir:attribute-def:mail" encodeType="false" />

<AttributeEncoder xsi:type="SAML2String"

name="urn:oid:0.9.2342.19200300.100.1.3" friendlyName="mail"

encodeType="false" />

</AttributeDefinition>

<AttributeDefinition xsi:type="Simple" id="displayName">

<InputDataConnector ref="mySIS" at

tributeNames="displayName"/>

<AttributeEncoder xsi:type="SAML1String"

name="urn:mace:dir:attribute-def:displayName" encodeType="false" />

<AttributeEncoder xsi:type="SAML2String"

name="urn:oid:2.16.840.1.113730.3.1.241" friendlyName="displayName"

encodeType="false" />

</AttributeDefinition>

<AttributeDefinition xsi:type="Simple"

id="organizationalUnit">

<InputDataConnector ref="mySIS" at

tributeNames="organizationalUnit"/>

CONFIGURE SHIBBOLETH IDP WITH SQL AU
THENTICATION 77

<AttributeEncoder xsi:type="SAML1String"

name="urn:mace:dir:attribute-def:ou" encodeType="false" />

<AttributeEncoder xsi:type="SAML2String"

name="urn:oid:2.5.4.11" friendlyName="ou" encodeType="false" />

</AttributeDefinition>

<!-- == -->

<!-- Data Connectors -->

<!-- == -->

<!-- Example Relational Database Connector -->

<DataConnector id="mySIS" xsi:type="RelationalDatabase">

<ApplicationManagedConnection

jdbcDriver="com.mysql.cj.jdbc.Driver"

jdbcURL="jdbc:mysql://DATABASE_HOST:DATABASE_PORT/DATABASE_NAME"

jdbcUserName="DATABASE_USERNAME"

jdbcPassword="DATABASE_PASSWORD" />

<QueryTemplate>

<![CDATA[

SELECT * FROM user WHERE email =

'$resolutionContext.principal'

]]>

</QueryTemplate>

<Column columnName="email" attributeID="uid" />

<Column columnName="email" attributeID="mail" />

<Column columnName="full_name" attributeID="displayName" />

<Column columnName="affiliation"

attributeID="organizationalUnit" />

</DataConnector>

</AttributeResolver>

Update the DATABASE_HOST, DATABASE_PORT, DATABASE_NAME,

DATABASE_USERNAME and DATABASE_PASSWORD configurations with the same values

provided in the previously configured JAAS login module.

Note: The previous ShibUserPassAuth JAAS login module and the DataConnector con

figuration entry from /opt/shibboleth-idp/conf/attribute-resolver.xml file

should share the same database connection, that means they use the same database configuration

such as the same username, password and url.

78 © 2006-2023 MUSEGLOBAL INC

2 In the /opt/shibboleth-idp/conf/attribute-filter.xml configuration file, in order

to provide rights to export the attributes configured in the /

opt/shibboleth-idp/conf/attribute-resolver.xml configuration file, the following

entry must be added:

<AttributeFilterPolicy id="sp_unique_identifier">

<!-- Export these attributes to all configured Source Providers. -

->

<PolicyRequirementRule xsi:type="ANY" />

<!-- The list with configured attributes which will be accesible in

the Source Provider. -->

<AttributeRule attributeID="uid" permitAny="true" />

<AttributeRule attributeID="mail" permitAny="true" />

<AttributeRule attributeID="displayName" permitAny="true" />

<AttributeRule attributeID="organizationalUnit" permitAny="true" />

</AttributeFilterPolicy>

More informations can be found in the Shibboleth Identity Provider 3 documentation at this link.

3 Restart the Tomcat Servlet Container and try to authenticate to Shibboleth IDP with a user

defined in configured database and check if the user attributes are exported by the IDP and are

the same with ones defined in database.

CONFIGURE SHIBBOLETH IDP WITH SQL AU
THENTICATION 79

https://wiki.shibboleth.net/confluence/display/IDP30/AttributeFilterConfiguration

80 © 2006-2023 MUSEGLOBAL INC

1.0
application.properties config file
Below is the content of the IDM_HOME/WEB-INF/classes/application.properties file needed

by the Muse IDM application to define the main application configuration.

Note: The value of application.url property must be set with current URL of the Muse IDM

application. This value is used to create dynamic URL's for email templates.

The name of current IDM application which will be displayed in web

application header.

application.name = MuseKnowledge™ Users Identity Manager

The full URL of IDM installation.

application.url = https://idm.domain

START HMAC CONFIGURATION INTEGRATION

The HMAC entry point URL which will be added for Home link from header .

This link also is used to redirect the user after a successfull logout when

the value of clientID parameter of logout request matches the value of

"entryPoint.clientID" configuration entry.

entryPoint.url = https://idm.domain/access/muse

#The value of client ID parameter sent from HMAC integration which will

identify the entryPoint URL and redirect to that URL after successfull

login.

#Example of logout URL: https://idm.domain/logout?clientID=IDMHMAC. In that

case the user will be redirected to login page and after a successfull

login will be redirected again to configured entryPoint URL.

entryPoint.clientID = IDMHMAC

#END HMAC CONFIGURATION INTEGRATION

#START CONTACT US CONFIGURATION

#The email where the contact us messages from contact us page will be send.

contact.us.email = contactus@example.com

#END CONTACT US CONFIGURATION

APPLICATION.PROPERTIES CONFIG FILE 81

#START LOGIN ATTEMPT CONFIGURATION

Flag configuration which enable or disable the login attempt feature.

Default value is false.

login.attempt.enabled = true

Specify here the maximum number of failed login attempts. Default value

is 3.

login.attempt.maxAttempts = 3

The size of the inmemory cache which will hold the failed login attempts.

Default value is 8192.

login.attempt.cacheMaximumSize = 8192

Represents how much time the user will be blocked whenever gets the wrong

username/password combination for at least 3 times. This value is parsed as

java.time.Duration. Default value is 30 seconds.

login.attempt.expireAfterWrite = PT30S

#END LOGIN ATTEMPT CONFIGURATION

#START REGISTRATION CONFIGURATION

Flag used to enable or disable registration. The user will be redirected

on login page when he try to access the registration page.

registration.enabled = true

Flag value to determine if registration is free or with administrator

approval.

registration.admin.approval = false

Flag configuration used to skip the email validation step when a new user

register in the application. Default value is set to false.

registration.skip.email.validation = false

Flag used to display or not the affiliation input field on registration

form.

registration.affiliation.input.show = true

#END REGISTRATION CONFIGURATION

#START CAPTCHA CONFIGURATION

The site key used by Google reCAPTCHA v2.

captcha.site.key=6LdOuYwUAAAAAP6JtotOdTWI0jYva0vhNmOSrM42

The secret key used by Google reCAPTCHA v2.

captcha.secret.key=6LdOuYwUAAAAAOV2KyYORs2biatSU88ujIk32vnT

The verification URL where the Google reCAPTCHA v2 whill be server side

validated.

captcha.verification.url =

https://www.google.com/recaptcha/api/siteverify?secret=%s&response=%s&remot

eip=%s

#END CAPTCHA CONFIGURATION

82 © 2006-2023 MUSEGLOBAL INC

#START CAPTCHA ATTEMPT CONFIGURATION

Default value is false.

captcha.attempt.enabled = true

Default value is 3.

captcha.attempt.maxAttempts = 3

Default value is 8192.

captcha.attempt.cacheMaximumSize = 8192

This value is parsed as java.time.Duration. Default value is 30 seconds.

captcha.attempt.expireAfterWrite = PT30M

This flag enable or disable captcha on login page. Default value is

false.

captcha.login.enabled = false

#END CAPTCHA ATTEMPT CONFIGURATION

#START PASSWORD VALIDATION CONFIGURATION

The minimum length of password allowed on registration process.

password.minLength = 8

The maximum length of password allowed on registration process.

password.maxLength = 25

The strength of password allowed on registration process.

password.strength = 2

#END PASSWORD VALIDATION CONFIGURATION

#START EMAIL VALIDATION CONFIGURATION

Comma separated list with denied emails(or only domains) to validate the

user registration request. Example: yahoo.com, hotmail.com

registration.denied.email =

Comma separated list with allowed emails(or only domains) to validate the

user registration request. Example: gmail.com, museglobal.ro

registration.allowed.email =

#END EMAIL VALIDATION CONFIGURATION

#START TASK SCHEDULER

The pool size of task scheduler thread pool.

taskScheduler.poolSize = 100

#END TASK SCHEDULER

#START ACCOUNT CONFIGURATION

The availability of the user registration token to validate his email

when he register. Parsed as java.util.Duration. Default value is P1D which

represent one day.

user.token.expiry = P1D

APPLICATION.PROPERTIES CONFIG FILE 83

The availability of a new user account created. Parsed as

java.util.Period. Default value is P1Y which represent one year.

user.account.expiry = P1Y

The password life time. Is parsed as java.util.Period. Default value is

P3M which represent 3 months.

user.password.life.time = P3M

The maximum password history which will be kept for an user represented

as integer. Default value is 5.

password.history.max.entries.per.user = 5

#END ACCOUNT CONFIGURATION

#START LOCALIZATION CONFIGURATION

The parameter name of locale used to change the application locale.

locale.paramName = languageCode

Default locale used by IDM application.

locale.default = en

locale.defaultEncoding = UTF-8

locale.useCodeAsDefaultMessage = true

locale.cacheSeconds = 0

#END LOCALIZATION CONFIGURATION

#START THEME CONFIGURATION

The parameter name of theme used to change the application theme.

theme.paramName = theme

Default theme name used by IDM application.

theme.defaultThemeName = default

Directory where themes are defined.

theme.baseNamePrefix = theme/

The cookie name where current selected theme name is saved.

theme.cookieName = theme

#END THEME CONFIGURATION

#START COOKIE AGREEMENT CONFIGURATION

Flag configuration used to display or not the cookie agreement from web

interface. Default value is false.

cookieAgreement.enabled = false

#END COOKIE AGREEMENT CONFIGURATION

#START MENU CONFIGURATION

themes.menu.enabled = true

List with all supported locales:

en,ro,ar,el,es,fr,ja,nl,de,tr,zh_CN,zh_TW

Empty locale list will no display any entry on menu.

84 © 2006-2023 MUSEGLOBAL INC

locale.enabled = en,ro,ar,el,es,fr,ja,nl,de,tr,zh_CN,zh_TW

#END MENU CONFIGURATION

#START STATIC RESOURCES CONFIGURATION

The cache period in seconds for static resources loaded from /

WEB-INF/static-resources/ directory.

static.resources.cachePeriod = 31556926

#END STATIC RESOURCES CONFIGURATION

#START ADMIN USER CONFIGURATION

admin.email = admin

admin.password = admin

admin.fullName = Administrator

admin.affiliation = Affiliation

#END ADMIN USER CONFIGURATION

#START EXTERNAL HTTP CONNECTION TIMEOUT

http.connection.timeout = 6000

http.read.timeout = 6000

#END EXTERNAL HTTP CONNECTION TIMEOUT

#TASK EXECUTOR

#The keep alive for threads from task executor in seconds.

taskExecutor.keepAlive= 3600

#First number represent the pool size and second represent the maximum pool

size.

taskExecutor.poolSize = 100-300

#Queue capacity for the ThreadPoolTaskExecutor. If not specified, the

default will be Integer.MAX_VALUE.

taskExecutor.queueCapacity = 1000

#END TASK EXECUTOR

#START FILE UPLOAD CONFIGURATION

multipartResolver.maxUploadSize = 104857600

multipartResolver.maxUploadSizePerFile = 50485760

multipartResolver.maxInMemorySize = 10240

multipartResolver.defaultEncoding = UTF-8

multipartResolver.preserveFilename = true

#END FILE UPLOAD CONFIGURATION

#START DATABASE TASKS CONFIGURATION

Run at every 10 minutes

task.purgeUnvalidatedEmails.cron = 0 */10 * ? * *

APPLICATION.PROPERTIES CONFIG FILE 85

#START NOTIFY ADMINS ABOUT TO EXPIRY ACCOUNTS

Run every day at 1PM

task.notifyAdministratorsAboutAccountsToExpire.cron = 0 0 1 * * ?

#task.notifyAdministratorsAboutAccountsToExpire.cron = 0 */1 * ? * *

The period from current date to found about to expiry accounts.

Need to be configured with values which can be parsed by

java.util.Period.parse(CharSequence text) method as in following doc

umentation

#

https://docs.oracle.com/javase/8/docs/api/java/time/Period.html#parse-java.

lang.CharSequence-

task.notifyAdministratorsAboutAccountsToExpire.firstNotification = P5D

task.notifyAdministratorsAboutAccountsToExpire.lastNotification = P15D

#END NOTIFY ADMINS ABOUT TO EXPIRY ACCOUNTS

#START TASK WHICH PURGE LAST N PASSWORD HISTORY ENTRIES

N is specified by password.history.max.entries.per.user configuration.

Run every day at 1PM.

task.purgeOldestNPasswordHistoryEntriesForAllUsers.cron = 0 0 1 * * ?

#END TASK WHICH PURGE LAST N PASSWORD HISTORY ENTRIES

#END DATABASE TASKS CONFIGURATION

#START REMEMBER ME CONFIGURATION

The key used by Remember Me module to generate the remember me cookie

value.

rememberMe.key=XMsrgecwQFHQHwMsqyvCzxQUGzLsoMem

Specify the validation of remember-me token in seconds.

rememberMe.tokenValiditySeconds=2592000

#END REMEMBER ME CONFIGURATION

#START LOGGING USER DETAILS ON AUTHENTICATION PROCESS

Flag configuration which enables the logging of user and his associated

IP on login and logout actions.

authentication.user.log.enabled = false

#END LOGGING USER DETAILS ON AUTHENTICATION PROCESS

86 © 2006-2023 MUSEGLOBAL INC

2.0
email.properties config file
Below is the content of the IDM_HOME/WEB-INF/classes/email.properties file needed by the

Muse IDM application for email functionalities:

EMAIL CONFIGURATION

#https://javaee.github.io/javamail/docs/api/com/sun/mail/imap/package-summa

ry.html

#https://javaee.github.io/javamail/docs/api/com/sun/mail/pop3/package-summa

ry.html

#https://javaee.github.io/javamail/docs/api/com/sun/mail/smtp/package-summa

ry.html

#More attributes to be set can be found on previous links and also these

need to be added on servlet-context.xml file under javaMailProperties.

email.from = EMAIL_FROM

email.replyTo = EMAIL_REPLY_TO

email.host = SMTP_HOST

email.port = SMTP_PORT

email.username = SMTP_USERNAME

email.password = SMTP_PASSWORD

email.debug= false

email.auth = true

email.starttls.enable = USE_TLS

email.smtp.ssl.enable = USE_SSL

email.charset = UTF-8

email.transport.protocol = smtp

email.template.location= classpath:/emailTemplates/

#Delay in milliseconds between emails when they are send bulk. 0 as value

means no delay.

email.bulk.delay.between.emails = 1000

END EMAIL CONFIGURATION

where replace the following variables with the actual values:

EMAIL.PROPERTIES CONFIG FILE 87

✃ SMTP_HOST. Specify here the hostname of the SMTP server.

✃ SMTP_PORT. Specify here the port on which the SMTP server is listening. It may be 25 (default

TCP prt), 587 (submission), 465 (SMPTPS), etc.

✃ SMTP_USERNAME. Specify here the username used for authenticating to the SMTP server if

necessary. Leave blank if not using authentication.

✃ SMTP_PASSWORD. Specify here the password used for authenticating to the SMTP server if

necessary. Leave blank if not using authentication.

✃ USE_SSL/USE_TLS. Specify true or false as values for each parameter, depending on the

capabilities of the SMTP server that is configured.

✃ EMAIL_FROM. Specify here an email address that will be used in the FROM email field for all

emails sent.

✃ EMAIL_REPLY_TO. Specify here an email address that will be used in the REPLY_TO email field

for all emails sent.

88 © 2006-2023 MUSEGLOBAL INC

3.0
database.properties config file
Below is the content of the IDM_HOME/WEB-INF/classes/database.properties file needed by

the Muse IDM application for database functionalities:

Note: On a fresh install if IDM application the value of database.hibernate.hbm2ddl.auto

property must be update and on an upgrade of IDM application the value must be validate instead

of update.

DATABASE CONFIGURATION

More properties can be found here:

https://docs.jboss.org/hibernate/orm/3.3/reference/en/html/session-configur

ation.html

Also these need to be added on database-context.xml file under

jpaPropertyMap.

database.driverClassName = com.mysql.cj.jdbc.Driver

database.url =

jdbc:mysql://HOST:PORT/DATABASE_NAME?autoReconnect=true&useSSL=false&allowP

ublicKeyRetrieval=true

database.username = DATABASE_USERNAME

database.password = DATABASE_USER_PASSWORD

The following values are supported:

#validate: validate the schema, makes no changes to the database.

#update: update the schema.

#create: creates the schema, destroying previous data.

#create-drop: drop the schema when the SessionFactory is closed

explicitly, typically when the application is stopped.

database.hibernate.hbm2ddl.auto = update

database.hibernate.generate_statistics = false

database.hibernate.format_sql = false

database.hibernate.show_sql = false

database.hibernate.dialect = org.hibernate.dialect.MySQL8Dialect

CONNECTION POOL CONFIGURATION

DATABASE.PROPERTIES CONFIG FILE 89

database.connectionPool.connectionTimeout = 30000

database.connectionPool.validationTimeout = 5000

database.connectionPool.idleTimeout = 600000

database.connectionPool.maxLifetime = 1800000

database.connectionPool.leakDetectionThreshold = 5000

database.connectionPool.maximumPoolSize = 100

database.connectionPool.minimumIdle = 5

database.connectionPool.connectionTestQuery = SELECT 1

database.connectionPool.poolName = IDMHikariConnectionPool

END DATABASE CONFIGURATION

where replace the following variables with the actual values:

✃ HOST. Specify here the database server host.

✃ PORT. Specify here the database server port.

✃ DATABASE_NAME. Specify here the database name which based on previous configuration is IDM.

✃ DATABASE_USERNAME. Specify here the username used for authenticating to the database server if

necessary. Leave blank if not using authentication.

✃ DATABASE_USER_PASSWORD. Specify here the password used for authenticating to the database

server if necessary. Leave blank if not using authentication.

The connection pool configuration also can be changed according with requirements.

90 © 2006-2023 MUSEGLOBAL INC

4.0
users.properties config file
Below is the content of the IDM_HOME/WEB-INF/classes/users.properties file needed by the

Muse IDM application to define administrator users:

idm =

{bcrypt}$2a$10$7YfiR8540.EGB0feM2L6JOxC4v1q8klhQ53O7XRQPcFGJ4MpxN2dC,SUPER_

ADMIN

The user represented by previous configuration entry has the username idm, the password is idm and the

role is SUPER_ADMIN.

The key which in this case is idm represents the username of the username, and the value represents the

password of the idm user with which he can authenticate as SUPER_ADMIN.

New entries can be added in this file and the password can be encoded from Password Encoder page

from web interface located under Utils header entry.

Note: A server restart is required when this file is modified.

Note: Keep in mind that the argon2 hashing algorithm cannot be used here.

USERS.PROPERTIES CONFIG FILE 91

92 © 2006-2023 MUSEGLOBAL INC

5.0
log4j2.xml config file
Below is the content of the IDM_HOME/WEB-INF/classes/log4j2.xml file needed by the Muse

IDM application for logging purposes:

<?xml version="1.0" encoding="UTF-8"?>

<Configuration status="info">

<Properties>

<Property name="LOG_DIR">../logs</Property>

</Properties>

<Appenders>

<RollingFile name="FileAppender" fileName="${LOG_DIR}/idm.log"

filePattern="${LOG_DIR}/idm.%d{dd-MM-yyyy}.%i.log.gz" ig

noreExceptions="false">

<PatternLayout>

<Pattern>%d{HH:mm:ss.SSS} [%t] %-5level %logger{36} -

%msg%n</Pattern>

</PatternLayout>

<Policies>

<OnStartupTriggeringPolicy />

<SizeBasedTriggeringPolicy size="100 MB" />

<TimeBasedTriggeringPolicy />

</Policies>

<DefaultRolloverStrategy max="10" />

</RollingFile>

</Appenders>

<Loggers>

<Logger name="org.springframework.security.saml" level="debug"

additivity="false">

<AppenderRef ref="FileAppender" />

</Logger>

<Logger name="org.springframework.security.oauth2" level="debug"

additivity="false">

<AppenderRef ref="FileAppender" />

LOG4J2.XML CONFIG FILE 93

</Logger>

<Root level="info">

<AppenderRef ref="FileAppender" />

</Root>

</Loggers>

</Configuration>

You can access link in order to change the default configuration.

94 © 2006-2023 MUSEGLOBAL INC

https://logging.apache.org/log4j/2.x/manual/configuration.html

6.0
Known Issues

✃ Migrating database content from one machine to another in a Muse IDM system migration case,
revealed an incompatibility due to the way the DBMS treats the names of tables and fields from the
case point of view. By default the MySQL DBMS handles table names, table aliases, and database
names in a case-sensitive manner and some old Muse IDM versions used case-sensitive for table
names. So there was a mismatch due to the case in the name of tables. This was handled by setting
the lower_case_table_names system variable in the configuration file to 1. For MariaDB on
a Linux OS this setting must be added into the /etc/my.cnf.d/server.cnf file and the SQL
server restarted.
[https://mariadb.com/docs/server/ref/mdb/system-variables/lower_case_table_names/]

KNOWN ISSUES 95

96 © 2006-2023 MUSEGLOBAL INC

	Muse Identity Manager Install
	Table of Contents
	1. Overview
	2. Installation
	2.1. Hardware Requirements
	2.2. Software Requirements
	2.3. Installation Steps
	2.3.1. DBMS Settings
	2.3.2. Apache Tomcat Installation
	2.3.3. Muse IDM Installation
	2.3.3.1. Installing the Muse IDM application as Web Application Archive
	2.3.3.2. Installing the Muse IDM application into Muse Embedded Apache Tomcat as external context
	2.3.3.3. License Key File Installation

	3. Advanced Configurations
	3.1. Changing Default Ports for Apache Tomcat
	3.2. Configuring SMTP
	3.3. Configuring DBMS
	3.4. Configuring Email Templates
	3.5. Configuring reCAPTCHA
	3.6. Configuring Themes
	3.7. Configuring Tasks

	4. Muse IDM as SAML 2.0 Identity Provider
	4.1. SAML Attribute Filter
	4.2. SAML Attribute Mapping
	4.3. Muse Proxy configured as Service Provider
	4.4. MuseKnowledge Search application configured as Service Provider
	4.5. Rocket.Chat configured as Service Provider

	5. Muse IDM as OAuth2 Authorization Server
	6. Muse IDM with HMAC authentication
	7. Internationalization support
	8. Theme Support
	9. User Custom Attributes
	10. Limit Login Attempts
	11. Session Management
	12. Payment Feature
	12.1. Stripe Integration
	12.2. Paystack Integration
	12.3. Verifone Integration

	13. User Password History
	14. User Password Expiration
	15. Automatic Registration for Allowed Emails
	16. Registration Advanced Field Validation
	17. Configure Shibboleth IDP with SQL authentication
	17.1. Install Shibboleth on CentOS 7.6
	17.1.1. Install latest JDK 8 available
	17.1.2. Install and configure Tomcat for Shibboleth IDP
	17.1.2.1. Install Shiboleth IDP

	17.2. Deploy Shibboleth in the Tomcat Servlet Container
	17.2.1. Configure Shibboleth to use the MySQL Database for authentication

	17.3. Configure Shibboleth to extract and export the user attributes

	Appendix 1. application.properties config file
	Appendix 2. email.properties config file
	Appendix 3. database.properties config file
	Appendix 4. users.properties config file
	Appendix 5. log4j2.xml config file
	Appendix 6. Known Issues

